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TERMS  IN  CYLINDRIC  ALGEBRAS1

CHARLES  PINTER

Abstract.    A  new algebraic treatment  of terms within  the

framework of cylindric algebras.

The theory of terms in locally finite polyadic algebras of infinite degree

has been developed by Paul Halmos [2] and Aubert Daigneault [1].

In this paper we present a simple, new treatment of terms in dimension

complemented cylindric algebras of infinite degree. By taking advantage

of the presence of diagonal elements (which cannot be assumed to exist

in arbitrary polyadic algebras), and by exploiting the well-known corre-

spondence between operations and predicates which are single-valued

in one of their variable places, we are able to introduce terms in a manner

which is direct, well motivated and easy to use.

1. Introduction. Our notation and terminology will be that of Henkin,

Monk and Tarski [3]. We begin with a brief discussion which is intended

to motivate our definition of terms in cylindric algebras. This discussion is

confined to the case of locally finite cylindric algebras, but the notions

we are about to introduce are immediately extended, in the next section,

to dimension complemented cyclindric algebras.

Two results from the literature will be useful to us here:

(A) If A is a first order language, íFjji(A) the free algebra of formulas in

A, and 0 a theory in A, then J^.w(A)/=a is a locally finite cylindric algebra

called the cylindric algebra of formulas associated with 0; conversely,

every locally finite cylindric algebra of infinite degree is isomorphic to the

cylindric algebra of formulas associated with some theory.2

(B) If 6X and 62 are first order theories, then the cylindric algebras

associated with 6X and 62, respectively, are isomorphic iff 6X and 62 are

definitionally equivalent.3
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If 21 is a locally finite cylindric algebra of infinite degree, then, by (A)

above, there is a first order theory Ö such that 91 is isomorphic to the cylin-

dric algebra of formulas of Ö. Let A be the language of Ö.

A formula F of A is said to be functional in vK (with respect to 6) if

Ör-(3!t;K)F. For example, if a is a term of A and vK does not occur in a,

then the formula vK = a is functional in vK. Conversely, if F is any formula

of A which is functional in vK, then there is a theory 6' which is an extension

by definitions4 of 6, and there is a term a of the language of 0', such that

P =0- (vK=a). Indeed, if no variables other than vx , • • • , vx , vK are free

in P, let 6' be formed from 0 by adding a new «-ary operation symbol/and

a new nonlogical axiom

P^vK =fvXi- ■ ■ vK;

if we let a designate fvXi • • ■ vXn, then P =$, (vK=a).

More generally, one easily shows that there is an extension by definitions

0* of 0 such that, if F is any formula of the language of 0* which is func-

tional in some variable vK, then there is a term a of the language of 6* such

that P =g, (vK = a). Clearly 6* is definitionally equivalent to 0, hence, by

(B) above, 91 is isomorphic with the cylindric algebra of formulas of 0*.

Thus, there is no loss of generality if we assume that 6 was chosen with the

property that

(C) if F is any formula of A such that dr-(3 \vK)P, then there is a term

a of A such that F =9 (vK=a).

Now let us consider ordered pairs (P, vK), where F is a formula of A, vK

is a variable, and F is functional in vK. If (P, vK) is such a pair, then by (C),

there is a term a of A such that P =$ (vK = a); we say that the pair (P, vK)

determines a. [For any formula Q, let S^Q designate the formula which

results from Q by validly replacing each free occurrence of vK by vß.]

If (P, vK) determines a, that is, F =e (vK=a), and if vl¡ does not occur in a,

then S^P =e (v^a); thus, (S^P, vß) determines a. Conversely, if (P, vK)

and (Q, v^) both determine a, then P =e (vK = a) and Q =e (v^=a), hence

P =e S»Q and Q =e S£P. We may conclude as follows: (F, vK) and (Q, p„)

determine the same term iff Q =e S^P and F =e S^Q.

The preceding remarks explain our definition of terms in cylindric

algebras, which follows next. Roughly speaking, each term a may be

identified with the class of pairs (F, vK) which determine a; that is, with

a class of pairs (P, vK) under the equivalence relation (P, vK)~(Q, v„) iff

Ö=9^FandF=9^ö.

2. The set of terms of a cylindric algebra. We come now to our main

definition.

1 See [5, p. 60].
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(2.1) Definition. LetQI=(/í, +,-, — ,0, 1,ck,</kA)k/1<([ be a dimension

complemented cylindric algebra of degree oc^co. Let

D = {(x,K):xeA,K<*,cKx= I,

and for all p e a. — Ax, x ■ s*x ^ dKfl}.

Let c¿ designate the equivalence relation in D given by (x, «)~(y, X) iff

y=s*x and x=.s¿y. Then 3~=D¡~ is the se/ of all the terms of 91.

In the remainder of this paper, let ÎI designate the dimension com-

plemented cylindric algebra (A, + , -, —, 0, 1, cK, dK>)K,)i<a of degree

a^cu.

Let a be a term of ?t; if (x, k) ea and Ax is the dimension set of x

[3, Definition 1.6.1], we let Aa designate the set of ordinals

(2.2) Aa = Ax - {k}.

We call Aa the dimension set of the term a; it follows immediately from

[3, 1.6.15)] that Aa does not depend on the choice of a representative

(x, k) in a. By (2.2) together with [3, 1.5.4(i), 1.5.9(i) and 1.5.10(iv)-(vi)]

one easily shows that

(2.3) if   (x, k) e a   and    X e a — Aa,    then    (s*x, X) e a.

Let a be a term of s2l; we will find it useful to adopt the following sugges-

tive notation:

(2.4) if   (x, k) e a,   we write x = dKll.

(Note that in the metalogical interpretation, dKa is the class of the formula

vK=a.) Now dka is uniquely determined by a and by k: for if (x, k) ea

and (y, k) e a, then (x, ic)~(y, k), so x=s*y=y. From this last statement

together with (2.3), it follows that for each term a e 3~ and every k e

a—Aa, there is a unique x in A such that (x, k) e a. Thus,

(2.5) for each aeJ and k e a—Aa, dKa is uniquely determined by

(2.4), and (dKa, #c) e a.

From (2.3) and (2.5) we are able to conclude that

(2.6) s«dKa = dXa

for all ae.T and k, X e oc-Aa. Furthermore, by (2.1), (2.5) and (2.6),

(2.7) cKdKa = 1,    and

(2.8) dKa ■ d,a ^ dKfl

for all a e ST and k, p e a—Aa. Finally, it is worth noting that dKa can

be defined for k e Aa, too; indeed, we let

(2.9) dKa = cÁ(dK¿ ■ dxa)
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where X e «—(AaU{/c}). Using [3, 1.5.9(i)] and (2.6), one immediately

verifies that (2.9) is independent of the choice of X.

For any two terms a, b e F, we may now define

(2.10) dab = cK(dKa-dKt)

for any k e a.— (AaUAb). Because of (2.6) and the fact that cKx=cxsKxx

for any x in A and X e a.—Ax [3, 1.5.9(i)], dab does not depend on the

choice of k. Quite trivially, dab=dta for all a, b e F. We remark that by

(2.2) and (2.10), Adab<^ AaKjAb; however, the reverse inclusion does not

hold in general.

If a e F and Aa=0, then a is an algebraic version of a constant.

Furthermore, it is worth observing that a variable vK may be intuitively

identified with the term (dKX¡ A)/~, where k^X.

We conclude this section with a result to be used later.

(2.11) Lemma.    For all a e ,F, k, Xe a. — Aa and x,y e A,

(a) dKa • dXa = dKa- dKX,

(b) cK(x ■ dKa) ■ dXa=cK(x ■ dKX) ■ dXa   ifK^X,

(c) cK(x ■ dKa) ■ cK(y ■ dKa) = cK(x ■ y ■ dKa).

Proof, (a) It follows immediately from (2.8) that dKa ■ dXa^dKa ■ dKX.

But

dKa-dKk^cK(dKa-dKX)   by [3, 1.1.1 (C2)]

= sX, by [3,1.5.1]

= dXa by (2.6).

By combining the two inequalities we have just established, we get (a).

(b) We are given that k^X and k ^ Aa; so by (2.2) and the fact that

(dKa, K) e o, it follows that k £ AdXa, hence cKdXa=dXa. Thus,

cK(x ■ dKa) ■ dXa = cK(x ■ dKa ■ dXa)    by [3, 1.1.1(C3)]

= cK(x ■ dKX ■ dXa)   by (a), above

= cK(x ■ dKX) ■ dXa    by [3, 1.1.1 (C,)].

(c) We choose any p<a such that p^K, p $ AcK(x • dKa), p $

AcK(j • dKa) and p $ AcK(x ■ y ■ dKtA. Then

cK(x ■ y ■ dKa) ■ dm = cK(x ■ y ■ dKf¡) ■ d^ by (b), above

= cK(x ■ dKtl) ■ cK(y ■ dKp) ■ 4m by [3,1.3.6]

= [cK(x ■ dKß) ■ dm] ■ [cK(y ■ dKlt) ■ d^]

= cK(x ■ dKa) ■ cK(y ■ dKa) ■ d„„ by (b), above.

We now apply cM to both sides of this equation; by (2.7), [3, 1.1.1(C3)]

and our choice of p, we obtain our result.
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3. Subtituting terms for variables. It is useful to introduce the notion

of term-for-variable substitution. If a is a term of 31 and k<oc, then s„,

the operation of a-for-K substitution, is defined as follows: for each

x e A,

(3.1) s*x = c^s'x ■ dßa),   where p e a - (Aa U Ax).

To show that our definition does not depend on the choice of p, we must

show that

(3.2) c<[slx • dva) = cv(s*x ■ dm), for any p, vea.- (Aa U Ax), p ^ v.

The proof is as follows:

c„(s> • d,J ■ dva = cß(slx • d„v) ■ dm   by (2.1 l)(b)

= sXx ■ dm by [3, 1.5.1]

= s*x-dva by [3, 1.5.110)].

Now apply cv to both sides of this equation; as in the proof of (2.1 l)(b),

v $ Adßa, so by [3, 1.6.6., 1.6.8. and 1.6.13], v $ Ac^s^x ■ d^); our result

follows by [3, 1.1.1(A)] and (2.7).
One easily verifies that the operations i£ are additive; that they are

multiplicative follows immediately from (2.1 l)(c). Furthermore, it is

obvious that if k $ Aa, then Ja0=0 and i£l = l. Thus, for each ae!7~

and /c<a, s„ is a Boolean endomorphism of 31.
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