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A PRIME-DIVISOR FUNCTION

J. KNOPFMACHER

ABsTRACT. This note studies the asymptotic mean values over
arithmetical progressions, the general distribution of values, and the
maximum order of magnitude, of a certain natural prime-divisor
function of positive integers.

Consider the multiplicative arithmetical function g defined by g(1)=1
and f(n)=o,a, * -+ o, if n=p{ip3* - - - p}r (p; prime, a;>0). Kendall and
Rankin [2, p. 199] pointed out that this function has the finite mean value

{23
=1.943---
Neveo NZ pn) = 4(6)

Strangely, perhaps, there appears to be virtually no other information
available about this natural arithmetical function. (See note added in
proof.) This note makes a more detailed study of its asymptotic properties.

1. Average values and distribution.

THEOREM 1. Let r and q denote relatively prime positive integers.
Then.

z ﬂ(n) 3 1{1'(2’ XO)L(:”’ xo) x + L(é9 Xo)L(%, Xo) x1/2
q

nSzin=r(mod q) L(6’ Xo) L(3’ xo)
L(}, x0) L3, x0) 3 H(NLG, x)LG, 20 X2
L(2, x0) L(3, x0)
+ Z 7L, x2)L(3, x§) x1/3}
x2 L(2, x0)

+ O(xa/m logD/lo x¢(q)q8/5),

where yq denotes the principal character mod q, and the terms in y,, X,
occur if and only if there exist characters y; 5%y, %27 Xo mod q such that

X=20> 13=1Xo-
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PrROOF. Given any character y mod ¢, the Euler product formula for
L(z, x) leads to the equation

z — _ Lz LQz, )LGz, 1)
glx(n)ﬂ(n)n = L6079

Therefore, if L(z, y)L(2z, x®)L(3z, x®)= a1 c(n, x)n=* [Re z>1], then
2, 1mBn) = 3, e, y(myp(m) = 3, 2(m)u(m) 3, eCk, 7).

nSz m<a m=z'/ xSz/m’

Now, by equations (68-71) of Richert [7], we have:

[Rez > 1].

S e, 70) = “—(‘Q (L2, LG, 70) + ¥L(h 20L(E, 70)

@ + x"L(}, 2oL (3, 20}
+ O(x3/10 log9/10 x¢(q)q8/5);
(i) > en, g) = ""(T") XL, 1)L, 20) 4+ O 1og™** x$(9)9™")

if x1 =20 but x; # xo;

S o, 19 = "‘fl") CPL, LG 2 + 067 log”™ xk(@)g™)

if 25 = 20 but xp # xo;

(iv) Z c(n, x) = O(x*** 1og®*® xq®*) for all other .
nsg
It follows for example that

S 1o = 3, x?(m)/t(M){

nSa

¢((I) 1/2

L(}, x0L(3, x1)
+ 0((x/m6)3/10 log’/m(x/ms)¢(q)q‘/3)}

+ O(x‘”“)]

¢(4) 1/2
L(3, 1)L, 14
2L, L, x)[m —

+ O(xs/lo 1039/10 x¢(q)q4/3)
— #q) xl/z L3, x)L3, 1) + O(Xs/m log’“o x qS(q)q‘/z).
q L(3, x0)

Similarly one can determine estimates for >,, x(n)f(n) in the other
cases. The theorem then follows from the equation

> B =2Bm == > xmir.

nSzin=r(mod q) nSe ¢( ) ymod ¢
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COROLLARY.
(2)€(3) C(%)C(%) wve , IBUB) s 3/10 , _9/10
—_ lo
2PW=Sg g Ky ¢ HowT e,

REMARK. By using a theorem of Schmidt [S] concerning 3., c(n)
where > c(mn—*=1{(z){(2z){(3z) [Re z>1], one can sharpen the error
term in this corollary to O(x"/#? log? x). For a more general, though less
sharp, version of the corollary, see the author [3]. (See note added in
proof.)

Next, by applying a theorem of Schoenberg [6, p. 319], one obtains

THEOREM 2. The function [ possesses an asymptotic distribution
function

F(x) = lim  card{n < N:f(n) < x).
N-owo N
This function is discrete, and the characteristic function of F(e*) is

f ztzdF(ex) — ].—I (1 _ p_l)ll + z p—r 1tlogr}
—® primes p
REMARK. As part of a different discussion, J. Ridley and the author
[4] have shown that, for each k=1, 2, - - -, the function f has a finite kth
moment
1 X S -

tim ~ > g = [1 (143 0= ¢ = 007}

N- o n=1 primes p r=2
It may also be mentioned that a slight modification of a technique of
Kendall and Rankin [2, p. 204] (who are concerned with the total number
a(n) of nonisomorphic abelian groups of order n) leads to an explicit
formula for the frequency

F,, = lim 1 card{n = N:f(n) = m}.
N-o N

Since this formula is relatively involved, we do not give it in detail,
but we note that by combining certain of the frequencies P,, calculated
for a(n) in [2, p. 205] one obtains:

F, =P, =6/m=0.6079 -, F,=P,=02008"-
Fy=Py=00742 -, Fy=P,+ Py =00542- -,
Fy =P, =00147 - - -, Fy = Pg + Py, = 0.0215 - -

Thus Fy+- - -+ Fg=0.9733 - - - , which emphasizes how closely the values
of B cluster about its mean value 1.943 - - - . In fact, after a computer
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check on the “empirical” frequencies of § over the range 1=n=<10,000,
J. Ridley has very kindly provided the following figures for the actual
frequenciesin this range: F;=0.6083, F,=0.2008, F3=0.0744, F,=0.0541,
F;=0.0151, Fg=0.0216. Here Fi+- - -+Fg=0.9743.

2. Maximum order of magnitude.

THEOREM 3. Given any >0 there exists an integer ny() such that

i ,B(n) < 3(1/3)(1+e)log n/log log n foralln = no(e),
wnile

ﬂ(n) > 3(1/3)(1—e)log n/log log n for inﬁnitely many n.

ProoF. The argument is parallel to one whereby Hardy and Wright
[1] proved an analogous theorem for the divisor function d(n). Firstly,
one notes by induction that a<3/3 for a=1, 2, - - - . Hence, for p=3"*
(6>0)and a=1,2,---,

1A
1A

a a
pa6 3a/ 3 *

If n=pi'p3* - - - p;r (p; prime, a,;>0), it follows that

., ‘ 3]/36
M) TS T g <emp(Zms).

n 1 Pi primes p=3"/* ) lOg 2

If 6=(1+14¢)log 3/3 log log n (¢>0), then

3U%  (log n)/"**®loglogn _elog3'*-logn
dlog2 (1 + 3e)log2-log3'? 2loglogn

for n sufficiently large. Hence the upper inequality follows.
For the lower inequality, let N=(p;p.- ‘- p,)® where p,;<---<p,
denote the first r primes. Then

log A(N) = rlog 3 = n{plog 3 2 “EPLrP I0E3

log p,
in a similar way to the situation in [1, p. 263]. Hence, in the same way,
there is a constant C such that

log N - log 3'® _ (1 — &)log 3% - log N
loglog N + C log log N

log B(N) >

for N sufficiently large, i.e. for r sufficiently large.

THEOREM 4. Given any ¢>0, f(n) <33 0+eloglogn for “glmost all” n,
i.e. all n outside some set of asymptotic density zero.
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Proor. The inequality a<3¢/% (a=1, 2, - - - ) implies that §(n) 3?3
where Q(n) is the sum of the exponents of the prime divisors of n. The
theorem then follows from Theorem 431 of [1], which states that Q(n)
has “‘normal order” log log n.

REMARK. One cannot expect a similar lower inequality, since for
example f takes the value 1 on all square-free integers, and these have
positive density 6/m2.

NOTE ADDED IN PROOF. In a recent paper, The number of square-full
divisors of an integer, Proc. Amer. Math. Soc. 34 (1972), 79-80, D.
Suryanarayana and R. Sita Rama Chandra Rao established the above
corollary to Theorem 1, with an error estimate slightly weaker than that
obtainable with the aid of Schmidt’s theorem [5].
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