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CHEBYSHEV  SUBSPACES AND   CONVERGENCE
OF  POSITIVE  LINEAR  OPERATORS

C.   A.   MICCHELLI1

Abstract. A theorem of Korovkin states that a sequence

of positive linear operators on C[a, 6] converges strongly to the

identity if and only if convergence holds on a three-dimensional

Chebyshev subspace of C[a, b]. We extend this theorem to include

Chebyshev subspaces of arbitrary dimension and convergence to

other positive linear operators.

1. Introduction. Convergence of a sequence of positive linear operators

to the identity can sometimes be proven by verifying convergence on a

finite set of functions. For instance, let C(X) denote the Banach space of

real-valued functions which are defined and continuous on the interval

X= [a, b]. Then a sequence of positive linear operators on C(X) converges

strongly to the identity provided convergence holds on a three-dimensional

Chebyshev subspace of C(X). This well known and striking result is due to

Korovkin (cf. [4]).

There is another formulation of this theorem in terms of linear functionals

on C(X). Given anxel, we define point evaluation at .v as the linear

functional x(f)=f(x). A sequence of positive linear functionals {Lk}

converges weakly to x, that is,

(1) limLkif) = xif),       feCiX),
fc-*oo

if and only if (1) holds for a three-dimensional Chebyshev subspace of

CiX).
The purpose of this paper is to extend this theorem to sequences of

positive linear functionals converging to linear functionals other than point

evaluations. Specifically, we answer the following question: What linear

functionals L have the property that a sequence of positive linear function-

als converges weakly to L on CiX) if and only if convergence holds on an

/7+1-dimensional Chebyshev subspace of C(X). We prove the corre-

sponding result for positive linear operators, show that certain improve-

ments in our result are not possible, and give some examples.
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For further generalizations of Korovkin's theorem see [5] or [6].

2. Convergence of positive linear operators. Consider the following

positive linear functional

(2) L(f) = 2 hf(*i) = 2 Mm

X,>0, i= 1, • • • , k and a^xx<- ■ ••Ort<6, Let us assign a weight of one

to an xt which lies in the interior of the interval [a, b], while an endpoint,

if it appears in (2), will be given a weight of £. The sum of these weights is

called the index of L and will be denoted by I(L). ££'„ is defined to be the

space of all positive linear functionals of the form (2) which have index

^n/2. An «-dimensional linear subspace 9/ of C(X) is called a Chebyshev

subspace if every nonzero element of °l/ has at most n— 1 zeros in X.

The basic ingredient in the proof of the Bohman-Korovkin theorem is

the existence of nonnegative functions which have a prescribed set of

zeros. The following result, whose proof can be found in [2], provides us

with this information for an arbitrary Chebyshev subspace.

Theorem A. Let <% be a n+ l-dimensional Chebyshev subspace of C(X)

and suppose S={sx, s2, • • • , sk} is a set ofk distinct points in [a, b] such that

2<-i w(si)=n where w(s) is defined to be two if s E (a, b) and one otherwise.

Then there exists a nontrivial nonnegative function uEtf/ which vanishes

precisely at the points of S. The only exception is that if'n=2m and exactly

one of the endpoints a or b is in S, then u may vanish at the other endpoint as

well.

Theorem 1. Let °?/ be an n+\-dimensional Chebyshev subspace ofC(X).

A sequence of positive linear functionals {Lk} on C(X) converges weakly to an

L e f£n if and only if

(3) lim Lk(u) = L(u),       u e <W.
fc-*00

Proof. Assume that (3) holds. Since <%l is a Chebyshev subspace, there

exists acef which is positive on the interval [a, b] (Theorem A). Set

m = minXGX v(x), then in view of the positivity of Lk

(4) ||M = Lk(l) <, Lk(v)/m.

Here, || Lk\\ denotes the norm of the linear functional Lk. Since lim^^ Lk(v)

exists, we conclude from (3) that Supt \\Lk\\ is finite. The Helly selection

theorem (cf. [1, Theorem 4.12.3]) states that any sequence of norm bounded

linear functionals on C(X) has a weakly convergent subsequence. Thus we

conclude that {Lk} has a weakly convergent subsequence.
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Let L0 denote any weak cluster point of the sequence {Lk}. The proof will

be complete if we can show L0=L. To this aim, we first note that L0 is

necessarily a positive linear functional which, on account of (3), satisfies

(5) L0iu) = Utt),       ue%.

Furthermore, since L e jSf„, L can be represented in the form

(6) L = 2 A***       i, > 0,
¿=i

with /(F)5=«/2. There exists, according to Theorem A, a nonnegative

öet which vanishes only at x e {xx, • ■ ■ , xk} or possibly at an endpoint

of [a, b] not in {xx, ■ ■ ■ , xk}. Therefore, from (5), (6) and the positivity

of L0, we conclude that

(7) Lo = 2 PA*
¡=o

where p^O, i=0, 1, • • • , k and x0 e {a, b} (if n^2m or both endpoints

are already in the set {xx, • • • , xk), then p0 can be taken to be zero).

Substituting this expression for L0 into (5), we obtain the relation

k

(8) ¿(^-^(iO-O,       ue*ll
¿=0

where we have defined ¿0=0. Since I(L)^n¡2, there are no more than

«+1 summands in (8) and so it follows that X¿=p¿, <=0, 1, • • • , k.

Remark. Theorem 1 implies that the restriction of any L e ^Cn to an

n+ 1-dimensional Chebyshev subspace has a unique extension as a positive

linear functional on C(X).

We now turn our attention to the version of Theorem 1 which is valid for

positive linear operators. Let F be a linear operator on C(X). For each

x e X, we define the linear functional x ° F by setting (x o T)f=(Tf)(x).

Theorem 2. Let T be a positive linear operator on C(X) such that

x ° Te Jífnfor each x e X=[a, b]. Then a sequence of positive linear op-

erators Tk converges strongly to T if and only if

(9) lim Tku = Tu,       ue if,
fc-»oo

where <% is some n+l-dimensional Chebyshev subpace ofC(X).

Proof. Suppose to the contrary that there exists age C(X) such that

Tkg does not converge to Tg while (9) holds. Then there exists an e0>0,

nk—>-co and a sequence {xk}^X such that

(10) \(xk o TJg - ixk o T)g\ ^ e0.
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Since X is compact, the sequence {xk} has a convergent subsequence. We

also denote this subsequence by {xk} and its limit by x0. Then from (9) we

have \imk^.a>(xk ° Tn )u=(x0 ° T)u, for all u eúi¿. Hence, it follows from

Theorem 1 that \\xnk_^(x.k ° T„ )g=(x0 o T)g. This contradicts (10) and so

the theorem is proven.

Example.    Let/e C[0, 1]. The nth Bernstein polynomial of/is defined

by

<»./x*>-|(3*>-*>*-?(*)•
Note that Bn is a positive linear operator on C[0, 1]. Moreover, if we define

w0(.v) = 1, ux(x)=x, and u2(x)=x( 1 — X) then the following equations can be

verified

(11) Bnu0 = ua,       Bnux = ux,   and    Bnu2 = (1 - l/n)u2

(cf. [5]).

Let 5* denote the Ath power of the linear operation Bn and define

T/ = /,        if lim— = 0,

7/ = Bxf,   if lim — = oo.
n -* » ft

Then from (11) it immediately follows that linv.^ Bkn"Q-+TQ for any

quadratic polynomial Q. Since x ° Te Jt?2 for every .v 6 [0, 1] we can con-

clude from Theorem 2 that lim^^ Bkn-f^Tf for all/e C[0, 1]. This fact

appears in [3].

3. Improving Theorem 1. We will show that Theorem 1 is not valid if

either the hypothesis on L or the subspace tf/ is removed.

Theorem 3. Suppose °ll is an n+l-dimensional Chebyshev subspace of

C(X). Let L be a positive linear functional on C(X) with the property that its

restriction to tf/ has a unique extension as a positive linear functional on C(X).

Then L must be in S¿'„.

Proof. Assume to the contrary that L $ ¿£n and let {w0, ■••,«„} be a

basis for the Chebyshev subspace °l/.. Consider the moment space ^#n+1

generated by the set of functions {«„, ux, ■ ■ • , u„},

^n+i = {c = (c0, cx, ■ ■ ■ , O 6 En+1 | c, = F(uA, i = 0, 1, • • •, n},

where F ranges over all positive linear functionals on C(X). In [2] it is

proven that <J?n+x is a closed convex cone in £"+1 whose boundary is
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precisely the set

{c = (c0, • • •, eje En+1 | c¿ = F(u,), / = 0, 1, ••■,«, F 6 JS?„}.

Thus, the vector c=(L(u0), ■ ■• , L(un)) lies in the interior of ^¿,l+1. But

for every interior point of ^¿¿n+x there exist exactly two positive linear

functionals Fx and F2 in =zf „+1 which represent L, that is, for which we have

Fx(u) = F2(u) = L(u), «ef, (This result also appears in [2], Fx and F2 are

referred to as principal representations of L.) This is a contradiction and so

L must be in „z?„.

Theorem 4. Suppose °l¿ is an n+l-dimensional subspace ofC(X) which

is not a Chebyshev subspace, then there exist positive linear functionals R

andL on C(X) such that L e3?n, Ru=Lu,for allue<% and Rj^L.

Proof. Let {u0, ux, ■ • ■ , un} be a basis for the subspace tf/. Since <% is

not a Chebyshev subspace, there exist points r0<fi<' " '<'« such that

the system of equations

(12) 2WO = 0,       j = 0,1, ■•-,„,
¿=0

has a nonzero solution. We assume without loss of generality that |A,-|<1,

/'=0, 1, ■ • • ,n and the set F={y':A3>0} has cardinality _[«/2]. Define

L='2.jeJ Xfj and R= — ̂JtjXfj. Then (12) implies Lu-=Ru, for all
uetf¿. Moreover, Lef/?n, Lj£R and F is a positive linear functional.

This completes the proof.
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