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THE MODEL THEORY OF DIFFERENTIAL FIELDS
OF CHARACTERISTIC p^O

CAROL WOOD

Abstract. The theory of differential fields of characteristic

p¿¿0 is shown to have a model companion, the theory of differ-

entially closed fields, which is moreover the model completion of

the theory of differentially perfect fields. It is also shown that the

theory of differentially closed fields.is not co-stable.

0. We consider the theory Tp of differential fields of characteristic

/>#0, where p is a prime integer. This theory has a model companion

T*, the theory of differentially closed fields of characteristic/;. We consider

also an intermediate theory T'„, such that T* is the model completion of

T'v. The algebraic information needed to describe T* is found in Seidenberg

[7], and the procedure in defining T* is analogous to that given for

characteristic 0 by A. Robinson [5]. We also show that T* is not «-stable,

in contrast to L. Blum's result that the theory of differentially closed

fields of characteristic 0 is ro-stable.

Let the language L have similarity type with one binary relation (=),

two constants (0 and 1), three unary functions (~1, — , and D), and two

binary functions (+ and • ). The theory F„ is the usual theory of fields

of characteristic p (in terms of =, 0, 1, _1, —, +, and ■ ), together with

the following two axioms for the derivative D:

VxV>>(D(x • y) = D(x) -y + x ■ D(y))

and

VxVy(Z)(x + y) = D(x) + D(y)).

The theory of fields of characteristic p in the given similarity type is

universal, and the two axioms above are universal; thus T„ is a universal

theory.

Let J^" be a model of Tv, with underlying field structure F. (In general

we shall use script capitals for models of Tv and the corresponding Roman

capitals for the underlying field.) An element c e F is a constant provided

D(c)=0. The set of all constants in J^" is closed under _1, —, +, -, and

D, and clearly 0 and 1 are constants. Therefore the set C of constants
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determines a submodel # of F, called the constant sub(differential)

field of F. In particular, F^ç C, since D(bp)=0 for any b e F. The prime

field FP of characteristic p is contained in every model of F„, and is more-

over contained in the constant subfield of every model, since

D(l + ••■ + 1)= D(l) + ■ ■ ■ + D(l) = 0.

Thus Tv has a unique prime model Fp, which is itself a constant field.

We remark that any field F of characteristic p gives rise to at least one

model of Tp, where D(a)=0 for all a e F. If F is perfect, then this is the

only possible model of Tp; in particular all finite models of Tp are constant

fields. This and other facts follow from the following standard result about

extensions of differential fields. We state this result without proof; it is,

for example, a special case of [3, Theorem 14, p. 172].

Lemma 1.    Let F YTV, and let F'=F(b) be afield extension of F.

(i) If b $ F, bv=a e F, and D(a)=0, then for any c e F' there exists

a unique extension of D from F to F' such that D(b) = c and such that the

resulting structure F' is a model of T9.

(ii) If b is separable algebraic over F, then there is exactly one way to

extend D from F to F' such that F'YFV, F'^F.

1. Definition. A theory F has the amalgamation property provided

whenever F, Fx, and F2 are models of F with F<=,FX and F<=,F2,

that there exists F3\=T such that Fx^Fr3 and F2^F3.

Theorem 2.    The theory Tp does not have the amalgamation property.

Proof. Let F=Fp(t) be the field extension of the prime field by a

transcendental element t, and let F be the corresponding constant

differential field. Since t has no ptb root in F, we can find an extension

F[c] of F such that c$F, cv = t. By Lemma 1 there exist FXS.F and

F2^F, both Fx and F2 models of Tv, with Fx=F2 = F[c], such that

D(c)=0in Fx and Z)(c)=l in F2.

If there exists F3YTP with FX<=,F3 and Fr2<^F3, then F3YD(c) =

0aD(c)=1, which is impossible. Thus Fp does not have amalgamation.

We prove later that Tp possesses a model companion F* (i.e., that there

is F* which is both model consistent relative to Tv and model complete).

Using the following lemma we see that Tv has no model completion.

Lemma 3 (Eli Bers [2]). Let Tbe a theory which has a model companion

T*. Then T has a model completion if and only if T has the amalgamation

property.

Corollary.    The theory Tv has no model completion.

Proof.    Immediate from Theorem 2 and Lemma 3.
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Since the failure of amalgamation arises from the possible existence

of constants without pth roots, the following is a reasonable extension

ofTp.

Definition. The theory of differentially perfect differential fields of

characteristic p, T'„, is the theory Tv together with one additional axiom 0:

6 = Vx3y(D(x) = 0 => y" = x).

Thus the models of T'P are just the models of Tp which are closed with

respect to extraction of pth roots of constants. Since Tv is universal and

6 is V3, we have that T'v is V3, but obviously not universal.

Theorem 4.    The theory T'v is a model consistent extension of Tp.

Proof.    Let ¿F¥TP, and let {a,},<a be the set of all the constants of

IF, indexed by some ordinal a. Define a chain {■Fn}n<0l of models of TB

as follows:

(¡) JFo=jt.

(ii) If a„ has a pth root in J%, let J%+1=,F„. If not, let ^'^.12«F,

such that F^+x contains a pth root of a,, with FnJrXYTp. (Such an Fn+X

exists, by Lemma 1.)

(iii) For /9<<x, ß a limit ordinal, let Jrí=lJ,<í Jr,.

Now let J¡r<1) = (J,<ct J^",. Since Tp is universal (hence inductive), we

have FWYTP; furthermore, every constant in F has a pth root in !Fm;

repeating the above procedure w times we obtain a chain F=FWÇ:

jT(i)s jr<2)ç. . . t such that every constant in J27"» has a pth root in .F<m>

and such thatßrU)\=Tp,j=0, 1, • • •.

Finally, let &" = \Jj<u>FU). Clearly F'^&, and ^'1=7;, since r„

is inductive. If a is a constant in F', then for somey'<w, a is in J5"01;

hence a has a />th root in Fu+1). Thus ^'1=7",, and we have shown that

any model of Tp is contained in a model of T'p as desired.

We observe that FPVT'P, since Fp is a perfect field, and so T'P has the

same prime model as does Tp.

2. In this section we describe the theory of differentially closed fields

of characteristic p, which we call T*. To find axioms for T* we use

Seidenberg's elimination theory [7], which enables us to axiomatize the

class of existentially complete models of Tp.

We use the following notation:

(i) For integers /', k>0, we use Fj(xx, • • • , xk), Gj(xx, ■ ■ ■ , xk), and

H(xx, ■ ■ • , xk) as abbreviations for terms in our language corresponding

to polynomials in xx, ■ ■ ■ , xk with coefficients in Fp.



580 CAROL  WOOD [October

(ii) For n>0, we let R(xx, • ■ • , x„) be an abbreviation for a formula

3xn+x ■ ■ ■ 3xn+t(D(Fx(xx, ■■■, xn)) = 0 A D(F2(xx, ■■■ , xn+x)) = 0

A • ■ • A D(Ft(xx, ■■■, xn+t_x)) = 0

A xn+x = tx(xx, ' ■ ■ , xn) A xn+2 = r2(xx, ■ ■ • , xn+x)

A • • • A xvn+t = Ft(xx, ■■■, xn+t_x) A Gx(xx, ■■■, xn+A = 0

A • • • a Gs(x,, • ■ • , xn+t) = 0 A Z/(x1; • • •, xn+t) ^ 0),

where /, i>0, and the F,, G¡ and ZZ are as in (i).

Seidenberg proves that given a finite system of differential equations

and inequations over Fp in variables xx, • • • , xn+m:

Ji(xx, ■ ■ • , xn+m) = 0

f(x    ...   x      \-o

g(xx, • • • , Xn+m) J± 0

that there exists a finite set of formulas

{^iCxi» "- " , xn), • ■ ■ , Rr(xx, • •• , xn)}

(where the R¡ are as in (ii)), with the following property: for all FYT'P

and all ax, ■ ■ ■ , an eF, statements (*) and (**) are equivalent:

(*) There exists FX^F, FXVTP, and bx, ■ ■ ■ ,bmeFx, such that

fx(ax, • • ■ , an, bx, ■ ■ ■ , bm) = 0

fk(ax, ■ ■ ■ , an, bx, ■ ■ ■ , bm) = 0

g(ax, ■ ■ ■ , an, bx, ■ ■ ■ , bm) ^ 0.

(**) For some/, 1 ̂ y'^r, FYR¡ (ax, ■ ■ ■ , an).

For each system fx, ■ ■ ■ ,fk, g we let <pfl,...,fk,a,n.m be the following

sentence :

(Pt1,--.fk9.n.m

= Vx, • • • Vxn((3xn+X ■ ■ ■ 3xn+m (fx(xx, ■■■ , xn+m) = 0

A • • ■ Afk(xx, • ■ ■ , Xn+m) = 0 A g(xx, ■■■ , Xn+m) 5* 0)

o(Rx(xx, ■ ■ ■ , xn) V • • • V RT(xx, ■■■ , xn))).

The sentence cp says roughly that the Fx in (*) may be chosen to be F

itself.
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Finally we let T*=T'pyj{<pfi,...,fk_g^,m\fx, ■ ■ ■ ,fk, g is a system of

differential equations over Fp in the variables x1? • • ■ , xn+m, for some

n, m^.0}.

In his elimination procedure, Seidenberg also proves that for a given

¿FYT'P, if Fx exists as in (*), then Fx may be chosen to be an extension

of any given model of Tv which contains F'. This translates in our ter-

minology to the following.

Lemma 5.    77;e theory T'p has the amalgamation property.

Theorem 6.    The theory T* is a model consistent extension of T'v.

Proof. By Lemma 5 we may successively adjoin solutions to systems

of differential equations and inequations to a given differentially perfect

differential field F. Therefore there exists a chain &=FW<=1FW<^- ■ ■

of models of Tp, such that any finite system of equations and inequations

over«^'3', which has a solution in some extension of F{i) has a solution

in Fii+1). Therefore F'=\Jj<mFU) is a model of T*, since any finite

system over^' is a finite system over^01 for some/, and if the system has

a solution in any extension of FU), it has a solution in F~u+1), hence in

F', as desired.

Theorem 7.    The theory T* is model complete.

Proof. Any primitive formula in our language is equivalent to a

finite system of equations and inequations over Fp; thus the class of models

of T* is exactly the class of existentially complete models of Tp. By

Robinson's test, this is sufficient for T* to be model complete.

Theorem 8. The theory T* is the model completion of T'p and is the

model companion of Tp.

Proof. By Theorems 6 and 7, T* is the model companion of T'„,

hence also of 7"„ by Theorem 4. Using Lemmas 3 and 5, we see T* is the

model completion of T'p.

Theorem 9.    The theory T* is complete.

Proof. The model completion of a theory with a prime model must

be a complete theory, by Theorem 4.2.3 of [4]. Since F'v is the prime

model of T'p, we conclude that T* is complete.

We observe that the models of T* are not algebraically closed fields,

unlike the characteristic 0 differentially closed fields, since a nonconstant

can have no pth root. We summarize a few observations about models

of T* in the following theorem.
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Theorem 10. Let F¥T*, and let <ë be the constant subfield of F.

Then both F and ^ are separably algebraically closed (as fields), and <€

contains the algebraic closure ofFp, the prime field.

Proof. If b is separable algebraic over F, then by Lemma 1 there

exists F'^F such that b is in F'. By the model completeness of F*, this

implies that b is in F, hence F is separably algebraically closed.

If b is separable algebraic over ^, then b is also separable algebraic

over Jr, hence is in F. Let f(x)=xn + cn_xxn-1 + - • • + c1x+c0 be the

minimum polynomial for b over *ë. Taking the derivative of both sides of

the equation bn + cn_xbn~1 + - • - + cxb + c0=0 gives us

(nb*-1 + (n- l)cn_xb«-2 + ■■■ + cx)D(b) = 0,

since D(cA=0 for /=0, • • ■ , n—l.

Since  b  is   separable   over  #,   nbn~l + (n— l)cn_xbn~2 + - • • + c1#0.

Therefore D(b)=0 and b is in ^', as desired. NowF^tf, and the separ-

able algebraic closure of J5^ is the algebraic closure of Fp (since Fv is

perfect). Therefore Í? contains the algebraic closure of J%, and our proof

is finished.

3. In the language L it is known that the theory of differentially

closed fields of characteristic 0 admits elimination of quantifiers. While

the theory F* does not admit elimination of quantifiers for L, we can

modify our language by adding one unary function symbol so that the

resulting theory does have elimination of quantifiers. Let the language

L be obtained by adding a new unary function r to L, and let Tp be the

theory Tp together with the axiom

q, = VxVy((r(x) = y A D(x) = 0 => j" = x) A (D(x) ^ 0 => r(x) = 0)).

This restricts the notion of differential field to that of differentially perfect

differential field, and the theory f*=T*Kj{cp} is the model completion

of Tp, by the same argument as before. Since the model completion of a

universal theory always admits elimination of quantifiers, and Tp is

universal, we have the following

Theorem 11.    The theory T* admits elimination of quantifiers.

L. Blum gives a simple set of axioms for differentially closed fields of

characteristic 0, and shows more generally that any model completion

of a universal theory can be axiomatized by sentences involving only one

existential quantifier (see [1] or [6]). Seidenberg shows in [7] that it is

impossible to eliminate variables one by one in a system of differential

equations and inequations over a differentially perfect differential field.

To reduce a system to one involving one variable we must use the unary

function r; a system in one variable can be further reduced to one equation
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and one inequation, as in the characteristic 0 case, but this pair must

satisfy certain separability requirements in order to have a solution in some

extension field. Thus, while axioms for T* involving only one existential

quantifier must exist, Seidenberg's procedure does not provide a simple

formulation of such axioms.

4. Our final observation also arises from seeking an analogy with

Blum's work for characteristic 0. Blum proves that the theory of differen-

tially closed fields of characteristic 0 is to-stable. It follows that every

differential field of characteristic 0 is contained in a prime differentially

closed field (called its differential closure), which is furthermore unique

by a theorem of Shelah (see [6] for details). However, this procedure

gives us no information for characteristic/?, as the following shows.

Theorem 12.    The theory T* is not to-stable.

Proof. (We mean by the above that there exists a countable model of

T* over which there are uncountably many 1-types.)

Let ^YT*, <F countable, and let a e^ with D(a)=\. Let c be (alge-

braically) transcendental over F', and let ¡Fx be the differential field with

field structure Fx = F(c), where D(c)=\ and Jr1 is an extension of F.

Consider the element c-aeF(c). Since D(c—a) = 0, it is possible for

c—a to have a pth root in some extension of^Y

If there were b e Fx with bp=c — a, then b is of the form

_ a0 + <xxc + • • ' + a-„cn

" ß9 + ßlC + ■ ■ • + ßmcm '

for some a¡, ß} e F, where a0 and ß0 are not both 0. Taking pth powers of

the above equation gives us

oí + «Jc» + ■ • • + <cn" -(#+••• + fte-T(e - a).

Regarding this as an equation in c over Fand matching constant terms

yields aj=— ß%a. But then (a0//?0)î'=—a, and D(—a)=0, a contradiction.

Thus c—a has no pth root in Fx.

By Lemma 1 we may adjoin to Fx a pth root cx of c—a and define D(cx)

arbitrarily; in particular we may take D(cx) = kx for any integer kx,

0^kx<p. This determines an extension F2 of!F\, with F2 = Fx[cx\.

Now we claim cx—kxa is a constant without a pth root in F2. For if

be F2 were such that bv = cx—kxa, then by writing

b = a0 + a.xcx + • • ■ + (xp_xcl~l,        a, e F,,
we have

b* = cx - kxa = oj + <x?(c - a) + ■ ■ ■ + <_,(c - a)""1 6 F„
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and so cx e Fx, a contradiction. Thus we can continue, adjoining a

pth root c2 of cx—kxa and assigning D(c2)=k2 for some k2, 0^k2<p.

This determines !F3, an extension of F2, with F3=F2[c2], and with

D(c2—k2a)=0 but with no/?th root of c2—k2a inF3.

In this manner, given kx,k2,k3, ■ • •, 0^at¿</?, there exist J^çJ^sJ^Ç

<F,ç • • • and c, cx, c2, • ■ • such that

(i) D(c)=l,ceFx,cl=c-a,

(ii) D(Ci-k¡a)=0, D(d-ja)^0 íor d<j<p,jjiki, and

(iii) D(cA=ki, Ci e Fi+X, ci+l—ci—k;ia for /=1, 2, • • • .

We have now the following set of formulas with free variable/:

D(y) = 1

3xx(xx = y — a A D(xx) = kx)

3xxSx2(xf = y — a A D(xx) = kx A x2 = xx — kxa A D(x2) = k2)

•

lx, ■ • • 3x„(xi = y — a A D(xx) = kx

A ■ ■ ■ A xl = x„_j - kn^.xa A D(xn) = kn).

This set is extendable to a 1-type over Fr; for each choice of kx, k2, • • •

we obtain a distinct 1-type. Thus uncountably many 1-types exist over

F', and F* is not co-stable.

This leaves unanswered the question of whether there exists a notion

of differential closure for characteristic p; i.e., of whether prime differ-

entially closed extensions of models of Tp exist. This is answered affirma-

tively in a forthcoming paper, where we use an algebraic characterization

of certain extensions of models of Tv to show prime model extensions

exist, and also to give simple axioms for F* (and hence for F*), which

we were unable to do in §3 of the present paper.
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