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CONCAVE SOLUTIONS OF A DIRICHLET PROBLEM

H.   GUGGENHEIMER1

Abstract. We define a function that may serve as the measure

of the deviation of a plane convex domain from circular shape. Then

we show that the Dirichlet problem of Au + Ap(x, y)u=0 and

vanishing boundary values on a plane, convex domain can have a

concave solution only if an integral condition involving the deviation

from circular shape is satisfied. A weak form of the condition is

generalized to n dimensions.

The basic estimate for the first eigenvalue of a problem

a" + Xp(t)x = 0,       p(t) ^ 0,

x(a) = x(b) = 0,

is Ljapunov's inequality

(I) xSp(t)dt^A!(b-a).
Ja

The estimate has been generalized to p(t) of varying sign and to partial

differential equations.

Joukovsky [4] has given an elegant proof of (1) based on the fact that

the graph of the first eigenfunction together with the segment [a, b] bounds

a convex domain. In this note, we use a method inspired by that of

Joukovsky to study concave solutions of

Au + Xp(x)u = 0,       pix) ;> 0,

defined  in  a  convex  domain   D  of real «-space  of coordinates  x =

(xx, ■ ■ ■ , xn) for vanishing boundary values, u\sn = 0.

For given p, the behavior of the solution obviously depends on the

geometry of D. The important features can be studied on the example of

the equation with constant coefficients,

Au + Xu = 0 in D,       u = 0 on 3D.
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For n = 2 and D the unit disc, the solution surface

«i = UMx\ + xlf2)

is concave and together with D bounds a convex body (y0^2.4048 is the

first zero of the Bessel function of order zero). In this case,

A,     p(x) dxx dx2 = jItt.

For D the square [0,7r] x [0, tt], the solution surface «,=sin x, sin x2 is not

concave and A, $Dp(x) dx¡ dx2=2n2.

The inequality we shall prove indicates that the energy represented by

X1$Dpdx1dx2m\\st be large if ux is to be concave for noncircular Z). For the

square, the inequality would just replace = by >. The inequality is rather

strong for dimension 2 but weak for dimensions >2.

Deviation from circular shape. Let c be a strictly convex, closed, plane

curve and h(<p) its support function with respect to an interior point 0.

We put

s(<p) — (cos (p, sin q>),       n(<p) = ( — sin <p, cos <p).

The point of c whose oriented line of support has direction n(<p) is

c(cp) = h(<p)s(<p) + h'((p)n((p).

We denote by (i the angle between c(cp) and n(cp):

(2) cot p(<p) = h'(<p)lh(<p).

For a circle referred to its origin, cot ¡u=0. Conversely, a curve for which

cot p vanishes identically is a circle of origin 0.

In imitation of the definition of measures of symmetry [3] we define a

function on the space of plane, proper, convex bodies to be a measure of

deviation from circular shape if

(i) the function is invariant under the group of similarities,

(ii) the function is nonnegative and vanishes only for the circle.

The angle /¿(c?) can serve to define such a measure.

Proposition 1. //=min06intc § cot2 pt(tp) dtp is a measure of deviation

from circular shape.

The minimum exists since the integral is nonnegative, tends to oo for 0

tending to a point of the boundary c and, as will follow from our com-

putations, the integrand is uniformly continuous if 0 is in the interior of

c. Condition (i) follows from the invariance of angles and (ii) from the

remark after the definition (2).

Proposition 2. In the interior of any closed, convex curve there is a

unique point at which § cot2 p(q>) dqo is minimal.
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We assume first that c is a strictly convex curve. If we move 0 to 0* by a

translation of vector i, the support function is changed from h(cp) to

h*(<p)=h((p) — £ • s(<p). Hence, the integrand is changed to

cotV(9>) = h*'2/h*2

"I" e • s      e • n

. h h' .
+

(e • n)2

h'2

■    ,(fi)' (£ • S)(£ • H) .1
+ 3 —-4-^^ + 0(|e|)J.

Since e is an arbitrary vector, the integrand is stationary as a function of 0

only if

We are interested in the quadratic term

(e • nf        (e • sf _    (e-s)ie-H) > 2 (e • sf

h'2 h2 hW        =        h2

Since the term is nonnegative and its integral positive, any stationary

point is an isolated minimum. Since the Euler characteristic of a convex

domain is one and the stationary points are nondegenerate, Morse theory

(in this simple case, a formula of C. Maxwell) implies that there is a unique

stationary point.

For a curve that is not strictly convex, p(q>) is not defined if the line of

direction n(<p) carries a segment of c. However, p(q>) is defined by (2) for all

9? except a countable set and the conclusion of the preceding paragraph

still holds.

Example. For the square, 0 has to be chosen as the center and //=

8-2tt.

A condition for concave solutions.

Proposition 3. If the first eigenfunction of Au + Xp(x)u=0, p(x)>0, in

the interior of a closed, convex curve c, «=0 on c, is concave then

Xx        p(x) dxx dx2 > 277 + H(c),
Jint c

where H(c) is the deviation of the curve c from circular shape.

Proof.    We may take the eigenfunction ux>0 in int c. By definition,

Aux dxx dx2 = — Xx\      p(x) dxx dx2
Jint c J int c
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and, by the Green-Stokes formula,

iJin
Aw, dxx dx2 = — <p |grad u,| ds

since c is a level line of the function uv Here, ds is the element of length of

the convex curve c.

The convexity of the surface u1=u1(x1, x2) implies first that ux has a

unique maximum m = ux(P) in int c. Let h be the support function for the

center P. Since the tangent plane at any point Q e c is in the exterior of the

surface, m^h(Q)\grad ux(Q)\. Hence,

c r
m A,        p dxx dx2 ^ A,        pux dxx dx2

Jint c Jintc

(3)
= <f Igrad Ul(Q)\ ds(Q) ̂  m <£ ̂.

Je Jc h(Q)

The last integral appears in classical eigenvalue estimates (cf. [2, §11.3]).

For the moment, we assume that c is a C2 curve. Then, ds—(h+h") d<p

and

Since any closed, convex curve can be approximated in the Blaschke

topology by analytic curves (see, e.g., [1, no. 27]) and the terms at the

extremes of (4) are defined for all convex curves and lower semicontinuous

in the Blaschke topology, the inequality (4) holds for all closed, convex

curves in the form § h~x ds^.2-tT-\-H. We also note that equality cannot

hold between the extreme terms of (3) even if we would allow p(x) to be a

generalized function. In fact, equality in the first inequality can hold only

if the surface u=ux(x) is a right cylinder over c and in the second inequality

if it is a cone. The proposition now follows from (3) and (4).

The strict inequality in the proposition is essential as can be seen from

the example of the vibrating plate (p=\) for which nevertheless

27T2 = A,        p dxx dx2 > A,        pu, dxx dx2 = 8 = 2n + H.
Jint r Jint c

By the preceding remark, the fact that w, cannot be concave is contained in

the last equality. Therefore, we may state:

Corollary.    The first eigenfunction ux cannot be concave if

A,        p(x)w,(x) dxx dx2 = 2n + H.
Jint c
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An inequality for higher dimensions. Let P be an interior point of a

convex domain D in «-space. The polar equation of the boundary of D for

the origin at P is r=r(s) where s e Sn~l is the unit vector on the ray from P

to the point on dD. The line of direction .s intersects D in a chord of length

6(s) = r(s) + r(— s). The («— l)-volume element of the unit sphere Sn_1 is da>;

we denote the surface area of the («— 1) unit sphere by cn_x and put c0=2.

We also write dV for the volume element in «-space, dS for the («—1)-

volume element on the boundary surface dD, and put

à(P) = c-\[ nô(s)dœ(s).

Then,

Ô*(D) = min Ô(P) ^ w(D)
pen

where w(D) is the width, the minimal distance of parallel support planes.

With these notations, we have:

Proposition 4. If the problem Au+Xp(x)u=0 in a convex domain D in

n-space, pix) nonnegative and integrable in D, h=0 on dD, admits a first

eigenfunction ux defining a convex hypersurface xn+x = ux(xx, ■ • ■ , xn) in

(n+\)-space then

C /Ô*(D)Y~2
Xx\\j,(x)dV^cn_x[^}    .

Equality cannot hold for «> 1.

For «=1, equality holds for p a certain ¿-function since, then, the

proposition reduces to Ljapunov's inequality (1). For «>1, equality is

excluded for the same reason as in Proposition 3. The proof of Proposition

4 is an imitation ofthat of Proposition 3:

mXx f p(x) dVl>Xx[ p(x)uxix) dV = f  Igrad ux(Q)\ dS
Jd Jn JdD

.        f     dS> m      -
U h(Q)h(Q)

Put r=\Q—P\ and let s e 5n_1 be the unit vector in direction Q—P. Then,

f   JS->[  4S>¡     réduis).
hnh(Q)~hi) r  "Js""1JtD h(Q)

We may suppose «>2 since, for «=2 Proposition 3 is stronger than

Proposition 4. By the Holder inequality,

«£-"'*•* (JL~r*T'
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or,
-2

f     ¿r* dw ̂  c^íc^ i     r da)jn~

= cn_1(5(P)/2)"-2.

The proposition follows at once.
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