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FINITENESS  CONDITIONS  FOR  PROJECTIVE

AND INJECTIVE  MODULES

JOE  W.   FISHER

Abstract. Does Hopkins' theorem extend to projective mod-

ules, i.e., are projective Artinian modules Noetherian? An example

is given to answer this question in the negative; however, we show

that the answer is affirmative for certain large classes of projective

modules. Dually, are injective Noetherian modules Artinian?

Again the answer is negative; nevertheless, we provide an affirmative^

answer for certain classes of injective modules.

Introduction. It is well known that the endomorphism ring of a

module which is both Artinian and Noetherian is semiprimary. The author

has noted [7] that the endomorphism rings of both projective Artinian

and injective Noetherian modules are semiprimary. This raised the fol-

lowing questions: Do there exist projective Artinian modules which are

not Noetherian, or could it be true that Hopkins' theorem [11, p. 132]

extends to projective modules? Dually, do there exist injective Noetherian

modules which are not Artinian [8], [9, p. 378]?

In §1 we prove that the endomorphism rings of both projective Artinian

and injective Noetherian modules are semiprimary. We give an example

of a projective Artinian non-Noetherian module in §2 and show that

Hopkins' theorem does extend to a projective Artinian Zv-module M in

each one of the following cases: (a) R is commutative, (b) R is hereditary,

or (c) M is a generator in the category of /^-modules.

An example of an injective Noetherian non-Artinian module is given

in [14]. In §3 we prove that if M is an injective Noetherian Z?-module

where R is a ring with polynomial identity which satisfies the ascending

chain condition on annihilators of submodules of M, then M contains an

essential submodule which is Artinian. From this it follows that injective

Noetherian modules over commutative rings are Artinian.
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Throughout this paper, R will denote an associative ring which does

have a unity and M will denote a unital right /?-module. If S is a subset

of M, then t(s) denotes {x e R: Sx=0}.

We note that the results in this paper can be immediately obtained

for certain abelian categories. See [10].

1. Semiprimary endomorphism rings. The following theorem was

announced in Fisher [7].

Theorem 1.1. IfMis a projective Artinian R-modu/e, then S=EndR(M)

is semiprimary. Dually, if M is an injective Noetherian R-module, then

S=EndR(M) is semiprimary.

Proof. We will prove only the first statement since the proof of the

second follows immediately by dualizing the proof we give. First we show

that S satisfies the descending chain condition on principal right ideals.

Suppose that q>xS^(f>2S^q>3S^- ■ ■ is a descending chain of principal

right ideals in S. For each n, there exists sn e S such that <f>„srt = <f>n+x.

Thus (f>„M^(f>nsnM=q)„+1M and so we obtain the following descending

chain of /î-submodules of M: <pxM~^<p2M^<p3M^ ■ ■ ■ . Since M is

Artinian, there exists a k such that <jikM=4>k+xM=<j>k+2M=- ■ ■ . We

claim that <pkS=<f>k+1S. Consider the following diagram.

M

M-^±+<f>k+lM-*0

Since M is projective, there exists xp:M^-M such that <pk+iy = <f>k. Thus

<f>kS=c/>k+1S and so S satisfies the descending chain condition on principal

right ideals.

By Bass [2, Theorem P] we have the Jacobson radical, J(S), of S is

left F-nilpotent and S/J(S) is semisimple Artinian. It follows from Fisher

[8, Theorem 1.5] that J(S) is nilpotent. Therefore S is semiprimary.

Remark 1. Theorem 1 remains true if "projective" is replaced by

"quasi-projective" and "injective" is replaced by "quasi-injective".

Also M need not be unital.

Remark 2. That M injective Noetherian implies End(M) is semi-

primary is due to Fisher and Small and appears with another proof in

[8]. Recently the author discovered that M projective Artinian implies

End(M) is semiprimary is due to Harada and appears with different

proof in [10]. Furthermore, Harada uses this to prove that M is finitely

generated and, quite surprisingly, that End(M) is right Artinian. We take

this opportunity to inflict on the reader a direct proof, which does not

rely on End(M) being semiprimary, that M is finitely generated.
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Lemma. If M is a projective Artinian R-module, then M is finitely

generated.

Proof. First it can be shown that the Jacobson radical, J(M), of

M is small in M by using a technique of proof used by Kasch-Mares

[13, Satz] and Miyashita [15, Proposition 3.4]. As is well-known, M

Artinian implies that M/J(M) is a finite direct sum of simple modules.

Hence there exists mx, m2, ■ ■ ■ , mk\n M such that mxR + m2R + - • • +

mkR+J(M) = M. However, J(M) is small in M. Thus mxR-\-m2R+- ■ • +

mkR = M and so M is finitely generated.

Remark 3. After establishing that M projective Artinian implies M

is finitely generated, one can also obtain that End(M) is right Artinian

by applying Sandomierski [18, Corollary 1].

2. Projective Artinian modules. We begin with an example of a

projective Artinian module which is not Noetherian.

Example. As in Fisher [6, Example 4], let F be a countably infinite

dimensional vector space over a field F and let {vx, v2, ■ ■ ■} be a basis

for V. For each positive integer /, consider the subspace Vi of V which

is spanned by {vx, v2, • ■ ■ , vA. Define the linear transformation F on F

by vxT=0 and viT=vi_x for ig2. Let F[T] be the polynomial ring gen-

erated over F by the transformation T. By considering Fas a right F[T]-

module, we see that the proper F[F]-submodules of V are precisely the

V¿, i=l, 2, • • • . Hence Fis an Artinian non-Noetherian F[F]-module.

Form R = (*o FlTi) and set M=(t0 o)- Then M is a projective right

Z?-module since it is a direct summand of R. Also it is easy to show that

each proper submodule /V of M is of the form (° Tf ) where IF is a nonzero

F[F]-submodule of V. Therefore M is a cyclic projective Artinian non-

Noetherian /î-module.

We proceed with some positive results. Let M be a projective Z?-module

with trace ideal T. An /?-module N is called T-accessible if and only if

NT=N. See [18].

Theorem 2.1. If M is a projective Artinian R-module, then M satisfies

the ascending chain condition on T-accessible submodules.

Proof. End(M) is right Artinian by Harada [10, Theorem 2.8].

Then Hopkins' theorem [11, p. 132] guarantees that End(AF) is also

right Noetherian. By the Lemma, M is a finitely generated projective.

Hence Sandomierski [18, Corollary 1] applies to show that M satisfies

the ascending chain condition of F-accessible submodules.

Now we consider cases in which Hopkins' theorem extends to projective

modules.
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Theorem 2.2. Let M be a projective Artinian R-module. If (a) R

is commutative, (b) R is right hereditary, or (c) M is a generator for the

category of right R-modules, then M is a Noetherian R-module.

Proof, (a) By the Lemma, M is finitely generated. Now M Artinian

implies that R/>(M) is Artinian by Northcott [16, Theorem 2, p. 180]. Then

Hopkins' theorem [11] forces /?/?(AF)iobeNoetherian. Again by Northcott

[16, Theorem 2] we obtain that M is Noetherian.

(b) If R is right hereditary, then each submodule of M is projective

by Cartan-Eilenberg [4, Theorem 5.4]. Wherefore, by the Lemma, each

submodule of M is finitely generated. Therefore M is Noetherian.

(c) This is implicit in Harada [10, Theorem 2.5]. Alternately, since

each submodule of M is F-accessible by Sandomierski [18, Proposition

1.2], it follows that M is Noetherian by Theorem 2.1.

Remark 4. The proof of (a) can be obtained from (c) by using

Cartan-Eilenberg [4, Proposition 6.1, p. 30] and Bass [3, Proposition

4.7, p. 70].

3. Injective Noetherian modules. Miller and Turnidge [14] have

produced an example of an injective Noetherian module which is not

Artinian. From the following theorem it will result that certain classes

of injective Noetherian modules are Artinian. We say that R is a P.¡.-ring

if R satisfies a polynomial identity with coefficients in the centroid and

at least one coefficient is invertible.

Theorem 3.1. If M is an injective Noetherian R-module where R is

a P.I.-ring which satisfies the ascending chain condition on annihilators

of submodules of M, then M contains an essential submodule which is

Artinian.

Proof. Since M is injective Noetherian, it follows by standard tech-

niques that M is a direct sum of finitely many indecomposable injective

Noetherian /{-modules. Hence it suffices to assume that M is indecom-

posable. There exists an ideal P which is a maximal element in {>(N):N

is a nonzero submodule of M). Moreover, P is prime and there exists

eeM such that P=i(eR). If the right ideal i(e)*—i(e)IP in the prime

P.I.-ring R* = RjP is essential, then it contains a nonzero two-sided ideal

by Amitsur [1, Theorem 9]. This contradicts the fact that /(eR) is the

largest two-sided ideal contained in i(e). Thus /(e)* is not essential in R*

and so there exists a nonzero right ideal U* such that U* is Ä*-isomorphic

to (U+t(e))l>(e). Hence U* is /?*-isomorphic to an /i*-submodule of

eR. Since eR is a uniform 7?*-module, the /?*-injective envelope of U*,

denoted ER.(U*), is /?*-isomorphic to ER.(eR). Because ER,(eR) is

an essential extension of eR as /\-modules, we have that ER.(eR)  is
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Ä-isomorphic to an Z?-submoduIe S of M. Now /?*-submodules of ER.(eR)

are i?-submodules and hence ER.(U*) is a Noetherian /?*-module.

Since R* is a prime P.I.-ring, it has a simple Artinian two-sided classical

quotient ring Q by Posner's theorem [17]. Furthermore, ER,(R*) coin-

cides with Q and is homogeneous, i.e., it is a finite direct sum of isomorphic

injective indecomposable Ä*-submodules. Each of these isomorphic

injective indecomposable Z?*-submodules of Q is /?*-isomorphic to

ER,(U*) which is a Noetherian Zv*-module. From this is follows that

Q=ER.(R*) = R* by Faith-Walker [5, Lemma 2.1]. Wherefore ER.(R*)

is an Artinian Z?*-module. Consequently ER.(eR) is an Artinian R*-

module and hence S is an Artinian /î-module which is essential. This

completes the proof.

Corollary 3.2. If M is an injective Noetherian R-module where R

is a right hereditary Noetherian P.I.-ring, then M is an Artinian R-module.

Proof. Let N be a maximal Artinian submodule of M. Since R is

right hereditary, M/N is an injective Noetherian Z?-module. If N^M,

then Theorem 3.1 yields a nonzero Artinian Z?-submodule of M/N.

This contradicts the choice of N. Therefore N=M and M is Artinian.

Corollary 3.3. // M is an injective Noetherian R-module with R

commutative, then M is an Artinian R-module.

Proof. Again we may assume that M is indecomposable. We have

that M is an injective R/ i(M)-module by Kaplansky [12, Theorem 203] and

R/t(M) is Noetherian by Northcott [16, Theorem 2, p. 180]. We consider

M as an R/i(M)-module and let P be as in the proof of Theorem 3.1.

As is well known in the commutative case M is primary with primary

radical P. As we have shown, P is maximal since R* is its own quotient

field. Moreover, P is nilpotent since R/>(M) is Noetherian. It is now clear

that M is Artinian.

The author would like to thank A. W. Chatters for pointing out an

error in an earlier version of Theorem 3.1 and the referee for improving

the exposition in several places.
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