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TENSOR PRODUCTS AND JOINT
NUMERICAL RANGE

A.  T.  DASH1

Abstract. It is shown that the joint numerical range of the

tensor product of several operators is the cartesian product of their

numerical ranges.

Here and in what follows, ¿Jf is a complex Hubert space and by an

operator on JtP we mean a bounded linear transformation from Jf into

itself. We denote by J?(Jt) the algebra of all bounded operators on ^f.

Next we need the following definition in the sequel.

Definition. Let A = (A,,•••, An) be any «-tuple of operators on

Jf. Then we define the joint numerical range of A to be the set W(A)

consisting of all z=(zx, ■ ■ ■ , zn) of C (the n-dimensional complex space)

such that for some/in ¿F with ||/|| =1 we have for eachy, z, = (/4¿/,/);

that is,

W(A) = {(Afif) = ((Axff), • • • , (Anf,f)):\\f\\ = \,feJt}.

For further details about joint numerical range the reader is referred to

[1]. See also [4].

Let J4?x, • • •, J^n be complex Hubert spaces. Further, let I¡ be the identity

operator and A¡ an arbitrary operator on Jf,, l^j^n. We consider

the tensor product of operators T¡ (1 ̂ j^n) acting on the tensor product

space Ji?x®- ■ -®Jif „ defined by

Tx = AX®I2®--- ® I,„

T2 = Ix® A2® I3®- ■■ ® /„,

and

Tj = Z, ® ■ ■ ■ ® If_x ® Aj ® ZJ+1 ®---®In,

in general. The operators F, obviously commute. For a good account

of tensor products of Hubert spaces and operators, the reader may consult
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Dixmier [3]. See also [6]. Let ^ be the double commutant of Tx, ■ ■ ■ , Tn;

that is, the set of all operators on J^x®- ■ ■®M'n which commute with

any operator commuting with all of T}. °t¿ isa commutative Banach alge-

bra. A complex vector z = (zx, • • • , z„) of Cn is in the joint spectrum

o(Tx, ■ ■ ■ , Tn) of the operators T¡ if and only if for all operators

Bu • • •, Bn in %

2 B^T, - z,) # h ® • ' • ® /„.

For facts about joint spectrum see [1], [2] and [4]. It is known that the

joint spectrum of the operators T¡ (1 ̂ y'^n) is the cartesian product of

their spectra; that is [5]

o(tx, ■ ■ ■, Tn)=n <*?,)=n <**)■

The purpose here is to prove an analogous assertion for joint numerical

range which is motivated by the paper of the author and Schechter [5].

Before we state our main result, it may be appropriate to point out

that the joint numerical range of an «-tuple of operators is not in general

convex. Furthermore, it is not known whether or not the joint numerical

range of an «-tuple of commuting operators is convex. Consult [1] and

[4]. However, the joint numerical range of the operators T¡ is convex

which is an immediate consequence of the following theorem.

Theorem. The joint numerical range of the operators T¡ (l^y'^w) is

the cartesian product of their numerical ranges; that is,

W(TX, ■ ■ ■ , Tn) = fl W(T,) = fl W(AjY

Thus it is convex.

We present here several propositions which lead to the proof of the

Theorem. To proceed further, we need the following notions and termin-

ologies.

Let Jt' and Jf be any two complex Hilbert spaces. We denote by

Jf0Jf their algebraic tensor product (the set of all finite sums

T}=ifj®gi,fj£j?,giejr) and Jf®Jf their Hilbert space tensor
product. We recall that 3^®JT is the Hilbert space completion (that

is, it is the completion of 3tif ® Jf for a scalar product which satisfies

</"i®£i./i®£t>=</i./.Xgi,£i» of ^0Jf. Consult [3] and [6].

Proposition 1. Let 3Hf and Jf be any two complex Hilbert spaces

and let E be a complex vector space. If qi is a bilinear mapping of Jf X Jf~
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into E, then there exists a unique linear mapping  K: Jf ® Jf—>-£ such

that<p(fg)=V(f®g).
This is often known as the "universalproperty". See [6] and [8].

The following proposition is crucial to the proof of the Theorem. This

is probably well known. See for instance [8, Exercise 39.1, p. 410].

However, we were unable to find the exact reference. We will give a proof

here for the sake of completeness, and for the benefit of the reader.

Proposition 2. Consider the tensor product spaces Jif®Jf and

$f®$P. Then there exists a unique bounded linear mapping t/:.5f (g)Jf—►

X~®^f such that U(f®g)=g®f This mapping is unitary; that is, it is

bijective, and {Uu, Uv)={u, v)for all u, v in ,W®$f.

Proof. We take F=Jf®Jf, and define a mapping <p: Jf X ¿f-»-

Jf®J^' by <p(f, g)=g®fi Evidently 99 is bilinear. Thus by Proposition 1

there exists a unique linear mapping U:Jf®Jf"-Of"®Jf such that

U(f®g)—g®f- Clearly, U is surjective. Now we show that U preserves

scalar products. Let u=^iif®gi and v=^¿¡f'j®g'j be any two vectors

in ¿P ®Jf. Then

/ \
(Uu,uv) = (ygi®fi,24g'j®f'j\

= 2 2 <g¿ »/* g i ®/í> = 22 <*» s'j) (Uf,)
i 3 i 2

= 22 </«/#> <fa s1,) = 22 <f* ® «*/í ® s'j)
i      i i       i

\   i 3 '

= (U, v).

Since J*?®Jf and X®3? are respectively dense in .^'®Jf and jf®Jt,

there is a unique continuous linear extension which we also denote by

U: 3ff' ®Jf—Of'®M~. Evidently U still preserves scalar products, and

hence norm. This implies that its range is complete, and therefore closed.

But the range contains 3f®3V, and so must be dense in Jf R>.5f. Thus

we have U(3f®Jt~)—Jf®3tf.

Proposition 3. Let A be in SP(3&~) and B be in 3?(.W), and ¡J be as

given in the preceding proposition. Then :

(a) A®B=U*(B®A)U, where star represents adjoint.

(b) The numerical range of A®B is the same as that of B®A; that is,

W(A®B)=W(B®A).
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Proof,    (a). We have

U*(B ® A)U(f® g) m U*(B ® A)(g ®/)

= U*(Bg® Af) = Af® Bg

= (A®B)(f®g).

They agree on a dense subset, and therefore the result follows, (b). This

is an immediate consequence of (a) and the property of U.

Proposition 4. Let M\, Jf 2 and Jf 3 be complex Hilbert spaces,

and let Ax be in =S?(Jf j). Then W(AX®I2)= W(I3®AX)= W(AX).

Proof. First we prove that W(AX®I2)= W(AX). If z is in W(AX),

there exists / in ,WX with ||/|| = 1 such that z={Axf,f). Let g be any

unit vector in Jf 2. Set u=f®g. Clearly, u is in .Sf x® Jf 2 with ||m|| = 1, and

((Ax ® I2)u, u) = (Axf® g,f®g) = {Axff} = z.

This implies that W(AX)^ W(AX®I2).

To prove the reverse inclusion, we need the following fact. Let Jbea

convex subset of C. If {z„} is a sequence of elements in X and {¡x„} is a

sequence of numbers such that a„>0 and 2a„=l, tnen 2"=i ajjzn ¡s

in X. This was recently proved by J. P. Williams. Now let z be any element

of W(AX®I2). Then there is a unit vector u in ^x®,ylf2 such that z=

((Ax®I2)u, u). Next we must show that z is in W(AX). lf{ex}X£A is an ortho-

normal basis for Jf'2, then m can be expressed uniquely as u=~^xeKfa®ea

for some family vectors {/,}aGA in Jf x such that ||h||2=1 = 2wA ||/,||2.

Consult [3, p. 22]. Thus we have

2 = ((A, ® /2)w, If)

-\2>4i/.®e«.2/.®*.}

aeA

Now we consider only the nonzero vectors/,. Clearly from the definition

of direct sum, we have that only a countable number of them are nonzero.

Thus renumbering them for convenience, we have

2 = ((Al «/,)«,«> = 2 <V-/J
aeA

oo oo (A    f      f \

= I(AJ„,fJ = Z\\fJ2{^ff^
n~\ n=\ IIJ n\\

oo

= 2 H/J^Aw v«>.
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where yn=fj\\fn\\ with ||t/\J = l. But (Axipn, ipn) is in W(AX) for each

«, and 2?=i ll/JI2=l- Therefore, z is in W(AX) by the above mentioned

theorem of Williams. Thus this proves that W(AX®I2)= W(AX).

To complete the proof of the proposition, it is enough to show that

W(I3®AX)= W(AX). This follows readily from Proposition 3 and the proof

given above.

In passing, we make the following remark. It is well known that the

numerical range of a finite direct sum of operators is the convex hull of

the numerical ranges of its summands [7, p. 113]. The proof of the

generalization of this assertion to an infinite direct sum of operators

follows easily from the theorem of Williams and the techniques used in the

preceding proposition. Recall that AX®I2 could alternatively be regarded

as direct sum.

The following lemma is important in sequel. To proceed further, we

refer the reader to the introduction for the definition of the operators T¡_

Lemma. The numerical range of the operator T¡ is the same as that of

Ajfor each j, 1 ̂ j^n; that is,

W(Tj) = W(A¡),   for all], 1 </' < «.

Proof. This follows readily from the repeated applications of Prop-

osition 4 and the associative property of the tensor products.

Proof of theorem. Clearly W(TX, ■■■, T„)<=Ylf=x B^T^HTF-i W(A,).
Consult the previous lemma.

Conversely, let z=(zx, • • • , z„) be an element of f]7=i W(^i)- Then

there exists/- in Jt ¡ with ||/J = 1 such that z}= (AJ^f) for all/ 1 ̂ j^n.

Then set u=fx®- • -®/„. Thus « is a unit vector in Jf,®- ■ -®Jfn, and

zj=(Tju,u)=(Ajfj,fj), for all j, l-^j^n. This implies that z is in

W(TX, ■■■ , Tn). Thus n"=i rV(A^ W(TX, ■■■ , Tn). This proves the

theorem.

It is not known in general whether the joint spectrum of a commuting

«-tuple of operators is contained in the closure of their joint numerical

range [1]. However, by the remarks in the introduction we have the

following

Corollary.    o(Tx, ■ ■ ■ , rjc w(Tx, ■ ■ ■ , Tn).

Proof.
n n    _

0(71, ' • •, Tn) « HI <*At) S u W(A,)

n

= n W(A,) = W(TX, ■■■, Tn).
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This also follows from above theorem and the fact that the joint spectrum

of an «-tuple of commuting operators is contained in the closed convex

hull of its joint numerical range [4].
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