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ON  RETRACTABLE SETS  WITH  RAPID  GROWTH

t. g. Mclaughlin1

Abstract. We combine a refinement of a recent theorem of

A. N. Degtev with a result of our own, in order to derive a general

theorem about regressive sets which has the following

Corollary. If A is any point-decomposable ir° set then A has an

infinite tt\ subset B such that B has "highly" dense-simple complement

and, moreover, all infinite n° subsets of B are effectively decomposable

in a strong sense (namely, they are all retraceable).

1. Introduction and principal theorem. Various recent articles ([1],

[3], [4], [10], and, implicitly, [9]) have dealt with (infinite) retraceable

sets A having the following property: if pA is the principal function of A

(i.e., the function which enumerates A in order of magnitude) and if

<pe is any partial recursive function, then <pe(pA(n))<pA(n+l) holds for

almost all n. Let us refer to this phenomenon as property (P), independ-

ently of whether A is retraceable. In [10], we proved some general

theorems about regressing functions which immediately imply the follow-

ing result:

Theorem 1 (cf. [10, Theorems 31.1 and 31.2]). If A is any infinite

regressive set of natural numbers, then there exist sets B and C such that

C is r.e., B=AnC, and B is a retraceable set having both property (P)

and, also, the property (which we shall call property (Q)) that pB(n)>q>e(n)

holds for all sufficiently large n, for any partial recursive function <pe.

(As is noted in [10], it is in fact the case that (P)=>(Q) holds for all retrace-

able sets.)

Naturally, we refer in both (P) and (Q) only to those x for which

<pe(x) is defined.

(For background information on retraceable and regressive sets,

the reader may consult [2].)

For the convenience of the reader, we shall briefly (and, in the case of

Theorem 31.1, very informally) indicate the content of Theorems 31.1
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and 31.2 of [10], from which it will be clear how they combine to yield

Theorem 1 above. Theorem 31.1 [10] is a rather technical result which,

very roughly speaking, asserts that if/ is any partial recursive regressing

function, then there is an r.e. set C and a partial recursive retracing func-

tion/?, such that if A is (the set of nodes of) an infinite branch of the graph

off, then CnA is an infinite retraceable set retraced by p and, moreover,

CnA when arranged in natural order has very strong order-preservation

properties with respect to the class of partial recursive functions. (Actually,

Theorem 31.1 of [10] asserts more; we have indicated only the portion

we need.) Theorem 31.2 [10] asserts that if the infinite branches of a

partial recursive retracing function have the order-preservation properties

of [10, Theorem 31.1], then they are all "thin" in the sense of enjoying

both property (P) and property (Q). Theorem 1 of the present paper

follows, since to be regressive is precisely to be (the set of nodes of) a

branch of a partial recursive regressing function.

In his interesting recent paper [1], A. N. Degtev has proved the following

theorem (among others) :

Theorem 2 (Degtev). Suppose A is an infinite retraceable set such

that Ä is r.e., and such that A has property (P). Then if B is any infinite

co-r.e. subset of A, B is retraceable.

We here observe that a somewhat stronger form of Theorem 2 holds,

namely :

Theorem 2'. If A is any infinite retraceable set having property (P),

and ifB is any co-r.e. set such that A nB is infinite, then A nB is retraceable.

Though the proof of Theorem 2' is not difficult, the theorem itself was

overlooked by the author of the present note in his fairly extensive investi-

gation [10] of sets with property (P). As an adequate indication of the

proof, we offer the following: Since A has property (P), the principal

function pA of A satisfies the condition

(3m)Çin)[(n > m &g(pA(n)) defined) => pA(n + 1) > g(pA(n))]

where g(n)~df(py) [y is the Gödel number of a computation of <pe(n)] with

e chosen so that 5=the domain of q>e. This fact allows us to tell of a

number pA(n+\) whether pA(n) is in B, with finitely many exceptions

(which of course do not matter).2

We come now to our main assertion and its corollary. In the statement

2 It is easily seen from this proof that a further strengthening of Theorem 2 is possible;

namely, in Theorem 2' we need not require that B be co-r.e. but only that it lie in the

boolean algebra generated by the r.e. sets.
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of the corollary, highly dense-simple means r.e. with complement having

property (Q); while point-decomposability is to be understood as defined

in [8]. (The notion of (not necessarily high) dense simplicity was first

introduced in [7].)

Theorem 3. Let A be an infinite regressive set. Then there exists à

recursively enumerable set B such that

(i) AC\B is infinite and retraceable and has properties (P) and (Q),

(ii) (VC)[(C r.e.&B^ C&A C\C infinite)=>A nC is retraceable].

Proof. Applying Theorem 1 to A, we obtain an r.e. set B such that

A C\B is infinite, retraceable, and has properties (P) and (Q). By property

(P) and Theorem 2', Ac\C is retraceable for any r.e. set C satisfying

Z?ç= C&A nC infinite, and we are done.

Remark. It is easily shown that property (P) is hereditary for retrace-

able subsets; hence, in the statement of Theorem 3, we can strengthen (ii)

by asserting that Ac\C has property (P) as well as being retraceable.

As remarked in [1], if A is r.e. and coinfinite and can be extended to an

r.e. superset B such that B has a point-decomposable complement, then

A can be extended to an r.e. set C such that C is infinite, immune, and

regressive. We therefore obtain the following corollary to Theorem 3,

which provides yet another refinement (see Theorems in [7], [6], and [11])

of Martin's result that hypersimple sets need not have maximal supersets:

Corollary 1. Let A be any r.e. set which can be extended to an r.e. set

B having a point-decomposable complement. Then A can be extended to a

highly dense-simple set C all of whose co-infinite r.e. extensions are co-

retraceable.

Proof. Property (Q), for the complement of an r.e. set, is precisely

our notion of high dense simplicity.

Remark. A weaker version of Corollary 1 is certainly already present

in [1], since Degtev there exhibits his own construction of a particular

co-r.e. retraceable set having property (P). The latter construction can in

fact be modified to take place inside a given infinite retraceable set with

r.e. complement, although this is not done in [1]; such a modification

leads at once to another proof of Theorem 1 for the special case in which

Ä is r.e.

2. A further application of Theorem 1, and a concluding remark relating

[1] and [5]. C. G. Jockusch has proved that no r.e. set can be both

dense simple (in the sense of [7]) and strongly effectively simple. (See

[5] for the meaning of strong effective simplicity; the standard example

is the original simple-but-not-hypersimple set constructed by E. L. Post.)
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From Jockusch's result and Theorem 1, since strong effective immunity

is trivially hereditary, we have:

Corollary 2. The complement of an infinite, co-r.e. regressive set

cannot be strongly effectively simple. (It is not hard to show, on the other

hand, that such a set can be merely effectively simple; again, see [5] for

the definition of effective simplicity. We are indebted to Jockusch for

pointing out Corollary 2.)

Proof. By Theorem 1 we have that each infinite, co-r.e. regressive set

can be shrunk to an infinite, co-r.e. retraceable set having property (Q) and

hence having a highly dense-simple complement. Now apply Jockusch's

theorem on the incompatibility of dense simplicity and strong effective

simplicity, noticing that any highly dense-simple set is certainly dense

simple in the sense of [7].

Jockusch has suggested that we remark also on the fact that Degtev

has shown, in [1], that every semirecursive regressive set is either r.e. or

co-r.e. This not only answers a question raised in [5], but, in light of

Corollary 2 above, it shows that Theorem 6.4 of [5] is vacuous.

We would like to emphasize, in conclusion, that the really crucial

observation for this note is Degtev's simple but rather striking Theorem 2.
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