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ON  APPROXIMATION  IN  THE  BERS  SPACES

CHARLES   K.   CHUI

Abstract. Let D be a Jordan domain in the complex plane with

rectifiable boundary C. Let Aq(D) denote the Bers space with norm

|| ||,. We prove that if/6 A„(D), 2<q<cc, then there exist functions

■s„W = 2£=i l/(z — zn!c), znltEC for k = \,- ■ ■ ,n, such that

\Un— f\\«—"-0- This result does not hold for 1 <q^2 even when D is

a disc.

1. Introduction and results. Let D be a bounded Jordan domain in the

complex plane with boundary C. For l<^<oo, let Aa(D) denote the Bers

space, that is, the Banach space of holomorphic functions/in D with

ÍÍ1(1) \\f\\Q = \\\f(z)\X21,\z)dxdy< oo,

where XD(z) is the Poincaré metric for D. Polynomial approximations in the

Bers spaces have been considered by various authors. In the case q^2,

Bers [2] and Knopp [5] proved that the polynomials are dense in Aq(D).

Recently, Metzger and Sheingorn [10] proved the polynomial density

result for q> 1 if D is a Smirnov domain, and Metzger [9] proved this

result for q>3/2 if the boundary curve C is rectifiable. In the following,

we will consider the approximation problem by the functions

(2) s„(z) = 2-, Z».* 6 C,

k=l, • • ■ ,n. The complex conjugate of s„(z) represents the gravitational

(or electrostatic) field at the point z due to unit masses (or charges) at the

points z„ijfc (cf. [7]). Korevaar [6] proved that if/ is holomorphic in D,

then there exist functions s„ as in (2) which approximate/uniformly on

each compact subset of D. However, recently Newman [11] proved that if

D is the open unit disc and |zni.| = l, k=l, ■ ■ • , n, then ||i„||2^77/18 for

all n. Hence, we cannot, in general, approximate in the spaces Aq(D) by
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the functions sn for 1 <q^2, when Z)isan open disc. For<7>2, we have the

following:

Theorem. Let D be a Jordan domain with reel¡fiable boundary curve C.

Let fe AaiD) where 2<q<cc. Then there exist functions sn as in (2) such

that ¡sn-f\\9-*0.

2. Proof of the Theorem. Let <f> be a conformai map from the exterior

of the unit circle onto the exterior of C such that <j>(cc)= oo and such that

the continuous extension to the closure, which we also denote by </>, maps

the point 1 to a point z0 e C. Let y'(t) = (f>(e'2,Tt), and denote the diameter of

D by d and the length of C by /. For 2<q<co, we have

277/
(3)

and

(4)

f     1^1
Jciz-ris

<

r_dt_

Jo \Z   —   11v(OI
<

q-2

2t7

r - 1

(4d)"

4"-2dQ-\

Indeed, by the Koebe-j Theorem (cf. [4]) we have A¿,(z)dist(z, C)~^.\ for

all z g D (cf. [2]), so that for each £ e C, we have

Jj \z -
dx dy ^ 4

< 4"

=   277-4'

7)

iï   \z-irUxdy

t\<<

/:

|a-íl<á

and, hence,

475(z)

r"-3 dr = -

277/

(4d)9-2

w/te'jj
proving (3). (4) can be proved similarly.

Now suppose that/e Aa(D). Since the polynomials are dense in AQ(D)

(cf [2], [5]), we can assume that/is an entire function. From a represen-

tation formula of Mac Lane [8], we can write

/(z)
= r_p(t

Jo z —

p(t) dt

v(0
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for each z e D, where p(t) is a real-valued analytic function on [0, 1]. Let

f (z) _ i y    PWn)
n¿xz-W(k/n)

and for a real x we denote, as usual, the largest integer no greater than x by

[x]. Then

so that

f(z) -fn(z) - - f     Ät\d{nt - [nt]}
n Jo z — yj(t)

v(0}:

fV(0rf*
Jo \z — w(t

\f-IX

1   f1 {nt - [w/]) /,
= - -     7-7W* W(z - v(0) + MOv (0} *

« jo \z — w(t)Y

J c|z - £

where c is an upper bound of \p(t)\ °n [0, 1]. By (3) and (4), we conclude

that \\f—fn\\Q = 0(l/n). Hence, we can assume that/(z) = a/(z—zx) where

zxe C and — 1 <a< 1. Actually, the above proof is independent of the

point z0, and for convenience, we can take z0=zx.

Now, for each z e D, we have

C2"      dt 2r
(5)

■ <¿(e!í)      z ■

Modifying a construction in [3], we let

r/,(co)

= 0.

•

f„ .» =

0,

(2   — a)7T  +   277

n + 1 — a
» *n,n

(2 - a)77

n + 1 — a

(2 -a)77 + 2(n - 1)tt

n -f- 1 — a

and z„ik = (/)(e''"■"), k<=0, •••,».  Let ¿<B(/) be the  step function  with

discontinuities only at the tn¡k such that

««(£*) - M»('».t) = J

for k=l, ■■ ,n, w„(0+)=(l-a)/2 and «n(2w-)=«+(l-*)/2. We also

take w„(0) = 0, w„(27r)=«-|-l —a and

»»(<».*) = [«*(<£*) + "«On.*)]/2

for /c = 1, ■ • ■ , n. Then it is clear that, for each z e D,
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Let vn(t) = un(t)-(nA-l-a.)t¡2TT. By (5) and (6) we have

(7)        2 1  - a = r dvM
k=o z - z».*     z - z0    Jo  z - <f>(eu) '

But by the construction of un and vn, it is clear that r„(0) = i;n(27r) =

yn(f«,)fc)=0 f°r k=l, ■ ■ • , n; and hence, it is .not difficult to see that

(8) sup K(/)| < maxR, í—-2|
0SiS2ir (2 2

Let E be any subset of D. Integrating (7) by parts, we obtain, by using

(8), that

íí|2
a

=n z      ' zn,*        z        z'

i«

^'(z) i/x dv

(9)

d<K*¿<)

(z - <p(e"))2
A7j "(z) ^ dy

Let e>0 be arbitrarily chosen. By (3), we can find a compact subset K=

K, of D such that

/4tfi£$**M**"
Z)\iC

Hence, for all w, we have, from (9),

(10) ff|S-V
JJ        k=0 Z  ~  Zn.it

n\K
z — z.

X2jf\z) dx dy < e.

On the other hand, since C is rectifiable, it is well known that <f>'(eu) is

Lebesgue integrable on [0, 2tt]. Hence, it can be shown, by using (8) and a

proof similar to that of the Riemann-Lebesgue lemma, that

/.2jr

Jo   ""(0
¿'(e^e"

(z - <p(e¿í))2
dt-rO

uniformly on each compact subset of D. (In doing this, we note that vn(t)

has the behavior similar to cos nt as in the proof of the Riemann-Lebesgue
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lemma.) Hence, by (7) we have

y      1 <*
k=0 Z Zn.k Z Z0

uniformly on the compact set K. By combining this with (10), we have

completed the proof of the theorem.
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