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ABSTRACT. Let G be a locally compact group P(G)={0=¢€
L,(G); j' ¢(x)dx=1}and (I,f)(x) = ,f(x)=f(ax) foralla, x € G and
JEL®(G). 0¥ € L®(G)*, ¥(1)=1 is said to be a [topological]
left invariant mean ([TLIM] LIM) if Y (,f)="Y(f) [¥($ *f)=
W(f)] for all a€ G, ¢ € P(G), f€ L®(G). The main result of this
paper is the

THEOREM. Let G be a locally compact group, amenable as a
discrete group. If G contains an open o-compact normal subgroup, then
LIM=TLIM if and only if G is discrete. In particular if G is an infinite
compact amenable as discrete group then there exists some 1" € LIM
which is different from normalized Haar measure. A harmonic analysis
type interpretation of this and related results are given at the end of
this paper

Introduction. It was known to Fred Greenleaf that if T is the circle
group then there are at least two different linear translation invariant
functionals ¥'20 on L*(T) with ¥'(1)=1. One of them is certainly that
given by the normalized Haar measure 2 on 7.

It is easy to show and it is known that on any compact G, 4 is the
unique 0=Y¥ € L*(G)*, ¥'1=1 which satisfies the stronger invariance
property Y'(¢ * /)="Y'(f) for all fe L*(G), ¢ € P(G) (i.e. A is the unique
TLIM on L®(G)). This is the case since ¢ * /'€ C(G) for all ¢ € P(G),
feL*(G) and if ¥ € TLIM then ¥ e LIM [6, p. 25]. Thus ¥'=1 at
least on C(G). But then forall fe L*(G),¥Y'(f)="Y (¢ * /)=A(¢ * f)=A(f).

It seemed to Greenleaf that for any compact infinite G, which is amenable
as a discrete group, there exist at least two different LIM’s on L*(G). Our
main result in this paper implies the

THEOREM. Let G be a locally compact group which is abelian or
o-compact and amenable as a discrete group. Then LIM=TLIM if and
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only if G is discrete. In particular on any compact infinite G which is
amenable as discrete there exists some Y € LIM different from the
normalized Haar measure.

Let H [H,] be the linear span of {f—I f; fe L*(G), ae G} [{f—¢ * f;
¢ € P(G), f€ L*(G)}] and for A<L®(G) let A [A*] denote the norm
[w*] closure of 4 in L*(G). In any locally compact group one has
A< H,c HY=H*< L*(G). Our last result (combined with some known
facts) when restricted to o-compact locally compact abelian groups runs
as follows:

PROPOSITION. (i) If G is compact and infinite then H< H.=H}=H*=
{fe L*(G); 4f=0}. o

(i) If G is not compact then H= A, Hf=H*=L1%(G). Moreover
L>(G)/H, is a nonseparable Banach space and H=H, iff G is discrete.

We conjecture at the end that for any locally compact amenable group
G, if G is noncompact then L*(G)/H, is a nonseparable Banach space and
if G is nondiscrete then H,/H is nonseparable (with induced quotient
norms).

Some more notations. Unless otherwise specified we assume the
notations and definitions of Hewitt-Ross [7].

If G is a locally compact group 4 will denote a fixed left Haar measure
(with 4(G)=1 if G is compact), we write sometimes { ¢(x) dx instead of
Jdr.

¥ e L®(G)* is said to be [topologically] left invariant if W(/f)=
Y(f) [¥(P*)=F(f)] for all feL*(G), ¢ €P(G), aeG (where
Lf(x) = of(x)=f(ax)). If ¥ satisfies in addition ¥'=0 and ¥'(1)=1 then
¥ is said to be a [topological] left invariant mean ([TLIM] LIM resp.).
The set of all [TLIM] LIM is also denoted by [TLIM] LIM. Analogously
we define [TRIM] RIM the sets of [topological] right invariant means.

We stress that LIM, TLIM are both included in L*(G)*. The locally
compact group G is said to be amenable if LIM# & (or equivalently if
TLIM# & see [6]). G is said to be amenable as discrete if G, (i.e. G with
the discrete topology) is amenable.

We write sometimes LIM(G), TLIM(G) to emphasize dependence on
the group G. If A=G, 1, denotes the function 1 on 4 and zero otherwise.
If ¥ € L*(G)*, we write W(B) instead of ¥ (1) for measurable B<G.
1 also stands for the constant one function on G.

ProposiTION 1. Let G be any noncompact locally compact group and
¢ € TRIM. If B is a measurable set and A(B)< co then ¢(B)=0.
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PrOOF. Let ¢, € P(G) be such that ¢,—¢ in w* and let 5 € P(G) be
such that 0=#(x)=¢ for all x € G. Then

|y * n(x)| =

f%(y)n(y“x) dl’ e f é(y) di = e.

Furthermore if f'€ L*(G) then

(b *M(f) = ¢l f 0 ) > $(f 27" ) = $(f).

(See Wong [10, p. 352).) Hence if f € L® N L then |(¢, * N)(f)I=] ¢l f| dA
so |¢fI=(Jlf] dA)e. Thus ¢f=0.

We need the following, probably known, proposition for which we
were unable to find a reference.

PROPOSITION 2. Let G be a o-compact nondiscrete locally compact
group. Then for any £>0 there exists an open dense set B G with A(B)<e.

Proor. It is enough to show the existence of a dense set D<=G with
A(D)=0 and the regularity of A would imply that for some open D< B,
A(B)<e.

If G is separable then there is some countable dense D<G. Clearly
A(D)=0.

Assume now that G is arbitrary and N=G a closed normal subgroup.
Let 6: G—G/N be the canonical map. If D<= G with 6D dense in G/N then
DN isdense in G. In fact if U= G is open with UNDN= g then UNNDN
=g so 071 (OUNOBD)=UNNDN= g thus 0UNOBD=g and 6U is open
in G/N which cannot be.

If G is o-compact nondiscrete let U<G be an open neighborhood of
the identity and let Go=|JZ, U". Then G, is open compactly generated
and there are countably many left cosets of G w.r.t. G,. The left Haar
measure of G, can be taken to be the restriction to G, of the left Haar
measure A on G. It is enough hence to show that there is a dense null set
D<@, i.e. we can and shall assume that G is compactly generated non-
discrete. Let then U, be a sequence of identity neighborhoods in G with
A(U,)—0 and let No(° U, be a compact normal subgroup such that
G/N is metrizable separable (see [7, p. 71]). (G/N is not discrete since
AN=0 so N is not open.) Let D={d;};<G be such that its image in
G/N is dense. Then DN<G is dense and A(DN)=0 since D is countable.

We need in the sequel the following proposition (not in its full force)
which is in part due to Felner [3] for discrete amenable groups.

PROPOSITION 3. Let G be a locally compact group which is amenable
as a discrete group. For fe€ L*(G) let M(f)=sup{¢(f); ¢ € LIM}. Then
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for all fe L*(G)
1 n
Mf = inf ess sup| — ax
7= infesssup| 13 f(a0)|

the inf being taken over the set </ of all finite tuples (a,, * - - , a,) of elements
of G.

PrOOF. Let H be the linear span of {f—/.f; a€ G, fe L*(G)}. Itis
known (and due to Felner [3, p. 6] for discrete G) that:

M(f) = inf ess sup(f(x) + h(x))
heH z

for all fe L*(G). (For an easy proof see [S, p. 401].)
Also if ¢ € LIM then ¢f=¢(n™ 37 I, f) hence

Mf =< inf ess sup 1 Zf(a,-x).
4 z n'y

Let now >0 and A, € H be such that M(f)4-&>ess sup(f(x)+hy(x)).
So M(f)+e=f(x)+hy(x) locally a.e. and a fortiori M(f)+e=
=t 37 L, (f(X)+ho(x)) loc. a.e. for all ay, - -, a, in G. We claim that a
finite set {b,, - - -, b,} < G can be chosen such that |k~ >, hy(x)| <e&/2 loc.
a.e. This would imply that M(f)+3/2ezk™ 3 I, f(x) loc. a.e., i.e. that

M(f) 2 infess sup - > L.f(x)
K4 z n=a

which would end this proof.

To prove this claim let hy=2>7 [f;—I. f;]. For the finite set F=
{c1, * = - ¢,} choose a finite subset A={b,, - - -, b} to satisfy c(c;A~A)<
dc(A) for 1=i=n where c(B) stands for the cardinality of B and §=
e(max;<;<n | fil)~'n1. Such A can be found by Felner’s characterization
of discrete amenable groups [2] (see Namioka [9, p. 22]). Then for each
i<n

1& 1&
L3 = )| = |~ 1 3 s, = L)
ki=! kj=1

= oe; A — A) I fill[e(A) < O £ = e/n.

Therefore [k~ 3, hy(x)| =¢/2 loc. a.e. which finishes this proof.
REMARKs. 1. It seems that this proposition does not hold true if G

is not amenable as a discrete group (even in the case that G is compact).
2. If m(f)=inf{é(f); ¢ € LIM} then

m(f) = —M(—f) = sg{pl:esszinfi Z f(a,.x)].
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3. One can show in a similar way that the support functional of the
set of two-sided invariant means is M, f=inf,, ess sup,(1/nm) >, , f(a;xb;)
where &7 is the set of all pairs of finite tuples (ay, - -+, a,)(by, - -, b,)
of elements of G.

THEOREM 1. Let G be a locally compact o-compact group which is
amenable as a discrete group. If LIM=TLIM then G is discrete.

PrROOF. Assume that G is not discrete and let O be an open dense
set in G with A(0)<4%. Thus, if G is not compact then ¢(0)=0 for all
¢ € TRIM hence ¥(0~1)=0 for all ¥ € TLIM (see [4, p. 50]). If G is
compact then A(0~1)=1(0)<}. Let B =G~0O~1. Then Bis closed nowhere
dense, ¥(B)=1 if ¥ € TLIM and G is not compact while A(B)>% if G
is compact. (In this last case {A}=TLIM=TRIM.) In different terminology
B is topologically left almost convergent to 1 (or to a positive real >}
if G is compact).

We claim that ¢(B)=0 for some ¢ € LIM. If not, then

m(1) = inf{$(1 ,); ¢ € LIM} = sup ess inf * > 1,(a,x) = d > 0.
o x n

But then, there are by, - -+, b, in G such that ess inf, k=1 3} 1,(b,x)=d/2
i.e. locally a.e. in x one has k=1 >} 1,,-15(x)=d[2>0. But this contradicts
the fact that A=G~U% b;'B is open dense, hence of nonzero Haar
measure and for x € A, k=1 3} 1,(b,x)=0. Using Remark 3 above one
could easily show that in fact ¢$(B)=0 for some two sided invariant mean
¢ on L°(G).

REMARKS. Let G be a locally compact amenable group with G,=G an
open subgroup. Let 4 (4,) be the Haar measures on G (Gy). As known
and easily shown the 4, measurable sets comprise exactly the A measurable
sets of G which are included in G,. We can and shall choose 4, to be the
restriction of 4 to G,. (We use the terminology of [7].)

For f € L*(G) define (zf)(x)=f(x) for x € G,. Then = can be considered
as a map onto L*(G,). If » € L®(G,)* is left invariant and fe L*(G),
let (S, f)(z)=v(wl f)forall z € G. Let {z,Gy},s be a fixed decomposition of
G into left cosets w.r.t. G,. Then, the bounded function, S, f is constant
on each z,G, (as known) since if z=z,a, a € Gy then S, f(z,a)=(7l, o f)=
v(l(7l, f))=S,f(z,), since a € G,. This implies that S, f€ UCB,(G) (i.e. is
left uniformly continuous as in [7] for all fe L*(G) and left invariant
v € L®(G,)*. This is the case since for all z € G, x € Gy, S, f(zx)—S, f(z)=0
and G, is open.

Choose and fix now some LIM, u, on C(G) and define for any left
invariant v € L*(Go)*, Tv € L*(G)*, by Tv(f)=pe(S.f).
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As known and readily checked T maps the set of left invariant elements
[LIM] of L*(G,)* into the set of left invariant elements [LIM] of L*(G)*.
The above is a refinement of a construction due to M. M. Day [1, p. 533].
In the above context we have the

PROPOSITION 4. Let G be a locally compact amenable group and Gy<= G
an open normal subgroup.
If Ty € TLIM(G) for some v € LIM(G,) then v € TLIM(G,).

Proor. If fe L®(G,) denote by f, its {z,} periodic extension i.e.
f1(z.x)=f(x) for all x € G, and all «. (Note that {z,} are fixed.) It is clear
that f; is measurable (since it needs to be so only on compacta [7, p. 131],
and G, is open).

If z € 2,G, then

™ 5,(f)(2) = 8$,(fi)Nz)) = =L, f)) = »(f)

since if x € Gy then (7!, f)(x)=f1(z,x)=f(x). Thus (Tr)fi=uo(S, f1)=
w0 (f) - 19)=of.

Fix now ¢, € P(G) with support included in G,. Then for fe L*(G,)
and x € G, one has:

LG+ 109 = [FO7 2040 dy
=[R20z A dy
= [ S b= A dy
= [ SO b= A dy = (¥, © )

where W,(y)=¢o(z,yzz") A(z;") for y € G,, thus ¥, € P(G,) and where
® stands for convolutionin L,(G,). Note, that since G, is normal ¢o(z,yz, ")
has support included in G,,.

It follows that if z € z,G, then

S @ * fi)(2) = S(do * /1)(z.)
= vl ($o x f) = v(¥, ® f) = »(¢y ® ).
Note that we have used in the last equality only the fact that » € LIM(G,y).
From it alone, it follows (see Greenleaf [6, proof of Lemma 222, p. 27))
that »(¢ ® f)=»(¥ @ f) for all $,¥ € P(G,).
Hence Tw(dq * f1)=po(S\(¢o * /1)) =7(¢o ® f).
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But by assumption Ty € TLIM. Thus T»(¢, * f;)=(T»)f;=+f and
hence, for all fe L*(G,), v(¢o ® f)=v(f). The above remark implies
that v € TLIM(G,) and finishes this proof.

THEOREM 2. Let G be a locally compact group which is amenable as a
discrete group. Assume that G contains a o-compact open normal subgroup.
If LIM(G)=TLIM(G) then G is discrete.

REMARK. 1. If G has equivalent left and right uniform structures then
G contains a neighborhood U of the identity with compact closure such
that xUx~'=U for all x € G. Thus Gy=Z, U" is normal o-compact
and open. In particular the theorem certainly holds true for all locally
compact abelian groups G. It also holds true for all -compact G which
are amenable as discrete groups (take G=G,).

2. We could have assumed in this theorem that G is a locally compact
amenable group and the open normal s-compact G, is amenable as discrete.
This however readily implies that G is amenable as discrete and we would
not gain anything. (The discrete G/G, and G, with discrete topology are
amenable hence so is G with discrete topology.)

Proor. If TLIM(G)=LIM(G) then TLIM(Gy)=LIM(G,) since
Tv € TLIM(G)=LIM(G) for all v € LIM(G,). Thus » € TLIM(G,) by
the previous proposition. We use now Theorem 1 and get that G, is
discrete. Thus if x € G, {x} is open in G, hence in G. Hence G is discrete.

The following is an interpretation of our and some known related
results from the point of view of harmonic analysis on locally compact
groups.

Let H [H,] denote the linear span of {f—I f;, fe L*(G), x € G}
[f—¢*f; fe L*(G), $ € P(G)}]. If A=L™(G) denote by 4 [4*] its
norm [w*] closure.

We need the following known remark whose proof uses a trick due to
I. Namioka [9].

Remark. Let ¥, ¥,, ¥, € L*(G)*, ¢ € P(G) and define (L¥)f=
V(¢ + f) for fe L*(G). Let ¥,v¥,=max(¥,,¥,) in the lattice L*(G)*
and ¥*+=¥'vO,V-=(-Y)vO. If ¥ e L*(G)* satisfies L,¥'=¥" for all
¢ € P(G), then so do W'+ and ¥~: If ¢ € P(G), L,(YVO)=(L,¥YVL,0)=
Yvo=¥*. So L¥+—¥+=0. But (L,¥*+—¥+)(1)=0. Thus L,¥+=Y".
(Same true, if L, is replaced by /7 for all a € G.)

PROPOSITION 5. (a) Let G be compact and infinite. Then
Hc H,= A= H*= {fe L*G); 4f = 0}.

If G is abelian (or even amenable as a discrete group) then Hw=H.,.
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(b) Let G be a noncompact locally compact group. Then H= H,= H*=

HY=L*(G). Furthermore
() H.=L*(G) iff H=L*(G) iff G is not amenable (i.e. LIM= ).

(ii) If G is o-compact amenable then L*(G)/H, is a nonseparable
Banach space.

(i) If G is a o-compact and amenable as discrete or amenable and
containing such an open normal subgroup (in particular if G is locally
compact abelian), then H=H. iff G is discrete.

ProOF. (a) A< H, is due to the fact that TLIM<LIM [6, p. 25], the
remark above and the Hahn-Banach theorem (this part with G not neces-
sarily compact). Thus A*< A7¥. If the inclusion were proper then there
would exist some ¢ € L,;(G) such that ¢(H)=0 but ¢(g)#0 for some
g € H,. But then ¢ is left invariant and in L,(G) hence ¢=cA for some
scalar ¢#0. Hence ¢(H,)=A(H,)=0 which cannot be. So Hc H,c H}=
Hi<{fe L*(G); Af=0}.

That A,={fe L*(G); »f=0} is a consequence of Theorem 7.3, p. 360
of J. C. S. Wong [10] or can directly be proven. The rest of (a) is implied
by the main theorem of this paper.

(b) If A*3 L*(G) there would exist 0#¢ € L,(G) such that ¢(H)=0.
But then ¢ is left invariant hence so are ¢+, ¢~ and ¢*+50 or ¢~#0.
Assuming that ¢+30, u(4)=f, ¢+ dA is a measure on the Borel sets of G
satisfying all the conditions in Hewitt-Ross [7, p. 194]. Hence u=ci
for some ¢>0 (since u0).

Since u(G)< o, A(G)< oo so G is compact. That (b)(i) holds is known
and readily shown. (b)(ii) is shown as follows: If L*(G)/H, would be
separable there would exist a sequence {f,}<L%(G) such that (if B
is the linear span of {f,}) A.+ B is norm dense in L(G) (see [4, p. 63]).
But A,={fe L*(G); Y(f)=0 for all ¥ € TLIM} Wong [10, p. 360].
Fix now some W, e TLIM and let ¥,f,=«,. Then {¥}={V € TLIM;
Yf,=a,n=1} since any ¥ which belongs to the right side will coincide
with ¥, on H,+ B hence on L*(G). We apply now [4, Theorem 5, p. 53]
with K=P(G) hence A={¥ eTLIM; ¥ (f,—«,)=0}={F,} is norm
separable. Thus G is compact. (b) (iii) is just our main theorem and the
fact that H=H, iff LIM=TLIM (by our remark above and the Hahn-
Banach theorem).

MAIN CONJECTURE. Let G be any amenable locally compact group.
If G is noncompact then L*(G)/H, is nonseparable. If G is nondiscrete
then H,/H is nonseparable.

Addition. In the meantime W. Rudin sent us a preprint of a paper of
his, in which he proves Theorem 2 without the assumption that (*) “G
contains an open g-compact normal subgroup”, but with the assumption
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that G is amenable as discrete. His proof is different from ours and uses
harmonic analysis type arguments. After reading his manuscript we found
the following easy argument which removes the restriction (*).

PROPOSITION.  Let G, be an open noncompact subgroup of G, and

G=UxGy  x,GoNxsGo=g ifas]p.
acl

If Ay< G, is such that A(Ay)< o (A—the Haar measure on G) then for all
¢ € TRIM, ¢(Uae] xaA0)=0'

PROOF. Let B, <G, be compact with A(B,)=a,t o0 and let f,=a,'l, ,
A=UJ, x,Ao- Then

Lo fl(0) = a7t f L () dy

= a;'A(xB, N A) £ a;'A(xG, N A)
= a;IA(XaGO N A) = a;zll(xaAO) = 0211(/40)

for some (hence all) « € 1.

If ¢ € TRIM then ¢(A)=¢(1, * f)<a, A(A4,)—0.

ReMARK. If ¥ € TLIM, then p(U, 45"x;")=0. (See [4, pp. 49-50].)
To remove restriction (*) on G, let G, be any o-compact, noncompact,
open subgroup of G, if G is noncompact, and G=G,, if G is compact.
Let A, G, be open dense with A(4,)<% and 4=/, 45"x;" (x, as above),
A=A, if G is compact. Let B=G~A. Then y(B)=1 for all y € TLIM, if
G is not compact, A(B)= 3% if G is compact. B is closed nowhere dense.
Continue now as in the proof of Theorem 1.
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