CRITERIA FOR COMPACTNESS AND FOR DISCRETENESS OF LOCALLY COMPACT AMENABLE GROUPS

EDMOND GRANIRER¹

ABSTRACT. Let G be a locally compact group $P(G) = \{0 \le \phi \in L_1(G); \int \phi(x) \, dx = 1\}$ and $(l_a f)(x) = {}_a f(x) = f(ax)$ for all $a, x \in G$ and $f \in L^\infty(G)$. $0 \le \Psi \in L^\infty(G)^*$, $\Psi(1) = 1$ is said to be a [topological] left invariant mean ([TLIM] LIM) if $\Psi({}_a f) = \Psi(f)$ [$\Psi(\phi * f) = \Psi(f)$] for all $a \in G$, $\phi \in P(G)$, $f \in L^\infty(G)$. The main result of this paper is the

THEOREM. Let G be a locally compact group, amenable as a discrete group. If G contains an open σ -compact normal subgroup, then LIM = TLIM if and only if G is discrete. In particular if G is an infinite compact amenable as discrete group then there exists some $\Psi \in LIM$ which is different from normalized Haar measure. A harmonic analysis type interpretation of this and related results are given at the end of this paper.²

Introduction. It was known to Fred Greenleaf that if T is the circle group then there are at least two different linear translation invariant functionals $\Psi \ge 0$ on $L^{\infty}(T)$ with $\Psi(1)=1$. One of them is certainly that given by the normalized Haar measure λ on T.

It is easy to show and it is known that on any compact G, λ is the unique $0 \le \Psi \in L^{\infty}(G)^*$, $\Psi 1 = 1$ which satisfies the stronger invariance property $\Psi(\phi * f) = \Psi(f)$ for all $f \in L^{\infty}(G)$, $\phi \in P(G)$ (i.e. λ is the unique TLIM on $L^{\infty}(G)$). This is the case since $\phi * f \in C(G)$ for all $\phi \in P(G)$, $f \in L^{\infty}(G)$ and if $\Psi \in TLIM$ then $\Psi \in LIM$ [6, p. 25]. Thus $\Psi = \lambda$ at least on C(G). But then for all $f \in L^{\infty}(G)$, $\Psi(f) = \Psi(\phi * f) = \lambda(\phi * f) = \lambda(f)$.

It seemed to Greenleaf that for any *compact* infinite G, which is *amenable* as a discrete group, there exist at least two different LIM's on $L^{\infty}(G)$. Our main result in this paper implies the

Theorem. Let G be a locally compact group which is abelian or σ -compact and amenable as a discrete group. Then LIM=TLIM if and

Received by the editors September 18, 1972.

AMS (MOS) subject classifications (1970). Primary 22D15, 22D35, 43A07; Secondary 22D05, 43A20.

¹ This research was done while the author held a Canada Council award. It is gratefully acknowledged.

Thanks are due to the referee for a simplification in the proof of Proposition 1.

² The main result of this paper has independently been obtained by W. Rudin in a recent paper *Invariant means on L* $^{\infty}$, Studia Math. 44 (1972), 219–227, which was not in print when our paper was sent for publication. (See Addition at the end of present paper.)

e American Mathematical Society 1973

only if G is discrete. In particular on any compact infinite G which is amenable as discrete there exists some $\Psi \in LIM$ different from the normalized Haar measure.

Let H [H_c] be the linear span of $\{f-l_af; f \in L^\infty(G), a \in G\}$ [$\{f-\phi *f; \phi \in P(G), f \in L^\infty(G)\}$] and for $A \subseteq L^\infty(G)$ let \bar{A} [\bar{A}^*] denote the norm [w^*] closure of A in $L^\infty(G)$. In any locally compact group one has $\bar{H} \subseteq \bar{H}_c \subseteq \bar{H}_c^* = \bar{H}^* \subseteq L^\infty(G)$. Our last result (combined with some known facts) when restricted to σ -compact locally compact abelian groups runs as follows:

PROPOSITION. (i) If G is compact and infinite then $\bar{H} \subsetneq \bar{H}_c = \bar{H}_c^* = \bar{H}^* = \{f \in L^{\infty}(G); \lambda f = 0\}.$

(ii) If G is not compact then $\bar{H} \subseteq \bar{H}_c \subseteq \bar{H}_c^* = \bar{H}^* = L^{\infty}(G)$. Moreover $L^{\infty}(G)/\bar{H}_c$ is a nonseparable Banach space and $\bar{H} = \bar{H}_c$ iff G is discrete.

We conjecture at the end that for any locally compact amenable group G, if G is noncompact then $L^{\infty}(G)/\bar{H}_c$ is a nonseparable Banach space and if G is nondiscrete then \bar{H}_c/\bar{H} is nonseparable (with induced quotient norms).

Some more notations. Unless otherwise specified we assume the notations and definitions of Hewitt-Ross [7].

If G is a locally compact group λ will denote a fixed left Haar measure (with $\lambda(G)=1$ if G is compact), we write sometimes $\int \phi(x) dx$ instead of $\int \phi d\lambda$.

 $\Psi \in L^{\infty}(G)^*$ is said to be [topologically] left invariant if $\Psi(l_a f) = \Psi(f)$ [$\Psi(\phi * f) = \Psi(f)$] for all $f \in L^{\infty}(G)$, $\phi \in P(G)$, $a \in G$ (where $l_a f(x) = {}_a f(x) = f(ax)$). If Ψ satisfies in addition $\Psi \geq 0$ and $\Psi(1) = 1$ then Ψ is said to be a [topological] left invariant mean ([TLIM] LIM resp.). The set of all [TLIM] LIM is also denoted by [TLIM] LIM. Analogously we define [TRIM] RIM the sets of [topological] right invariant means.

We stress that LIM, TLIM are both included in $L^{\infty}(G)^*$. The locally compact group G is said to be amenable if $LIM \neq \emptyset$ (or equivalently if $TLIM \neq \emptyset$ see [6]). G is said to be amenable as discrete if G_a (i.e. G with the discrete topology) is amenable.

We write sometimes LIM(G), TLIM(G) to emphasize dependence on the group G. If $A \subseteq G$, 1_A denotes the function 1 on A and zero otherwise. If $\Psi \in L^{\infty}(G)^*$, we write $\Psi(B)$ instead of $\Psi(1_B)$ for measurable $B \subseteq G$. 1 also stands for the constant one function on G.

PROPOSITION 1. Let G be any noncompact locally compact group and $\phi \in TRIM$. If B is a measurable set and $\lambda(B) < \infty$ then $\phi(B) = 0$.

PROOF. Let $\phi_{\alpha} \in P(G)$ be such that $\phi_{\alpha} \rightarrow \phi$ in w^* and let $\eta \in P(G)$ be such that $0 \le \eta(x) \le \varepsilon$ for all $x \in G$. Then

$$|\phi_{\alpha} * \eta(x)| = \left| \int \phi_{\alpha}(y) \eta(y^{-1}x) \ d\lambda \right| \le \varepsilon \int \phi_{\alpha}(y) \ d\lambda = \varepsilon.$$

Furthermore if $f \in L^{\infty}(G)$ then

$$(\phi_{\sigma} * \eta)(f) = \phi_{\sigma}(f * \eta^{\widehat{}}) \rightarrow \phi(f * \eta^{\widehat{}}) = \phi(f).$$

(See Wong [10, p. 352].) Hence if $f \in L^{\infty} \cap L^{1}$ then $|(\phi_{\alpha} * \eta)(f)| \leq \int \varepsilon |f| d\lambda$ so $|\phi f| \leq (\int |f| d\lambda)\varepsilon$. Thus $\phi f = 0$.

We need the following, probably known, proposition for which we were unable to find a reference.

PROPOSITION 2. Let G be a σ -compact nondiscrete locally compact group. Then for any $\varepsilon > 0$ there exists an open dense set $B \subseteq G$ with $\lambda(B) < \varepsilon$.

PROOF. It is enough to show the existence of a dense set $D \subseteq G$ with $\lambda(D)=0$ and the regularity of λ would imply that for some open $D \subseteq B$, $\lambda(B) < \varepsilon$.

If G is separable then there is some countable dense $D \subseteq G$. Clearly $\lambda(D) = 0$.

Assume now that G is arbitrary and $N \subseteq G$ a closed normal subgroup. Let $\theta: G \rightarrow G/N$ be the canonical map. If $D \subseteq G$ with θD dense in G/N then DN is dense in G. In fact if $U \subseteq G$ is open with $U \cap DN = \emptyset$ then $UN \cap DN = \emptyset$ so $\theta^{-1}(\theta U \cap \theta D) = UN \cap DN = \emptyset$ thus $\theta U \cap \theta D = \emptyset$ and θU is open in G/N which cannot be.

If G is σ -compact nondiscrete let $U \subseteq G$ be an open neighborhood of the identity and let $G_0 = \bigcup_{-\infty}^{\infty} U^n$. Then G_0 is open compactly generated and there are countably many left cosets of G w.r.t. G_0 . The left Haar measure of G_0 can be taken to be the restriction to G_0 of the left Haar measure λ on G. It is enough hence to show that there is a dense null set $D \subseteq G_0$ i.e. we can and shall assume that G is compactly generated non-discrete. Let then U_n be a sequence of identity neighborhoods in G with $\lambda(U_n) \to 0$ and let $N \subseteq \bigcap_{1}^{\infty} U_n$ be a compact normal subgroup such that G/N is metrizable separable (see [7, p. 71]). (G/N) is not discrete since $\lambda N = 0$ so N is not open.) Let $D = \{d_i\}_1^{\infty} \subseteq G$ be such that its image in G/N is dense. Then $DN \subseteq G$ is dense and $\lambda(DN) = 0$ since D is countable.

We need in the sequel the following proposition (not in its full force) which is in part due to Følner [3] for discrete amenable groups.

PROPOSITION 3. Let G be a locally compact group which is amenable as a discrete group. For $f \in L^{\infty}(G)$ let $M(f) = \sup \{\phi(f); \phi \in LIM\}$. Then

for all $f \in L^{\infty}(G)$

$$Mf = \inf_{\mathcal{A}} \operatorname{ess sup} \left[\frac{1}{n} \sum_{i=1}^{n} f(a_i x) \right]$$

the inf being taken over the set \mathcal{A} of all finite tuples (a_1, \dots, a_n) of elements of G.

PROOF. Let H be the linear span of $\{f-l_af; a \in G, f \in L^{\infty}(G)\}$. It is known (and due to Følner [3, p. 6] for discrete G) that:

$$M(f) = \inf_{h \in H} \operatorname{ess sup}_{x}(f(x) + h(x))$$

for all $f \in L^{\infty}(G)$. (For an easy proof see [5, p. 401].) Also if $\phi \in LIM$ then $\phi f = \phi(n^{-1} \sum_{i=1}^{n} l_{a_i} f)$ hence

$$Mf \leq \inf_{\mathcal{A}} \operatorname{ess sup} \frac{1}{n} \sum_{i=1}^{n} f(a_i x).$$

Let now $\varepsilon > 0$ and $h_0 \in H$ be such that $M(f) + \varepsilon > \operatorname{ess\,sup}_x(f(x) + h_0(x))$. So $M(f) + \varepsilon \ge f(x) + h_0(x)$ locally a.e. and a fortiori $M(f) + \varepsilon \ge n^{-1} \sum_{i=1}^{n} I_{a_i}(f(x) + h_0(x))$ loc. a.e. for all a_1, \dots, a_n in G. We claim that a finite set $\{b_1, \dots, b_k\} \subseteq G$ can be chosen such that $|k^{-1} \sum I_{b_i} h_0(x)| < \varepsilon/2$ loc. a.e. This would imply that $M(f) + 3/2\varepsilon \ge k^{-1} \sum I_{b_i} f(x)$ loc. a.e., i.e. that

$$M(f) \ge \inf_{\mathscr{A}} \operatorname{ess sup} \frac{1}{n} \sum_{i=1}^{n} l_{a_i} f(x)$$

which would end this proof.

To prove this claim let $h_0 = \sum_1^n [f_i - l_{c_i} f_i]$. For the finite set $F = \{c_1, \dots, c_n\}$ choose a finite subset $A = \{b_1, \dots, b_k\}$ to satisfy $c(c_i A \sim A) < \delta c(A)$ for $1 \le i \le n$ where c(B) stands for the cardinality of B and $\delta = \varepsilon (\max_{1 \le i \le n} \|f_i\|)^{-1} n^{-1}$. Such A can be found by Følner's characterization of discrete amenable groups [2] (see Namioka [9, p. 22]). Then for each $i \le n$

$$\left| \frac{1}{k} \sum_{j=1}^{k} l_{bj}(f_i - l_{c_i} f_i) \right| = \left| -\frac{1}{k} \sum_{j=1}^{k} (l_{c_i b_j} - l_{b_j}) f_i \right|$$

$$\leq c(c_i A - A) \|f_i\| / c(A) < \delta \|f_i\| \leq \varepsilon / n.$$

Therefore $|k^{-1} \sum l_{b} h_0(x)| \le \varepsilon/2$ loc. a.e. which finishes this proof.

REMARKS. 1. It seems that this proposition does not hold true if G is not amenable as a discrete group (even in the case that G is compact).

2. If $m(f) = \inf \{ \phi(f); \phi \in LIM \}$ then

$$m(f) = -M(-f) = \sup_{\mathcal{A}} \left[\operatorname{ess inf} \frac{1}{n} \sum_{i=1}^{n} f(a_{i}x) \right].$$

3. One can show in a similar way that the support functional of the set of two-sided invariant means is $M_0 f = \inf_{\mathscr{A}} \operatorname{ess sup}_x(1/nm) \sum_{i,j} f(a_i x b_j)$ where \mathscr{A} is the set of all pairs of finite tuples $(a_1, \dots, a_n)(b_1, \dots, b_m)$ of elements of G.

Theorem 1. Let G be a locally compact σ -compact group which is amenable as a discrete group. If LIM = TLIM then G is discrete.

PROOF. Assume that G is not discrete and let O be an open dense set in G with $\lambda(O) < \frac{1}{2}$. Thus, if G is not compact then $\phi(O) = 0$ for all $\phi \in TRIM$ hence $\Psi(O^{-1}) = 0$ for all $\Psi \in TLIM$ (see [4, p. 50]). If G is compact then $\lambda(O^{-1}) = \lambda(O) < \frac{1}{2}$. Let $B = G \sim O^{-1}$. Then B is closed nowhere dense, $\Psi(B) = 1$ if $\Psi \in TLIM$ and G is not compact while $\lambda(B) > \frac{1}{2}$ if G is compact. (In this last case $\{\lambda\} = TLIM = TRIM$.) In different terminology B is topologically left almost convergent to 1 (or to a positive real $> \frac{1}{2}$ if G is compact).

We claim that $\phi(B)=0$ for some $\phi \in LIM$. If not, then

$$m(1_B) = \inf\{\phi(1_B); \phi \in LIM\} = \sup_{A} \sup_{x} \inf \frac{1}{n} \sum_{i=1}^{n} 1_B(a_i x) = d > 0.$$

But then, there are b_1, \dots, b_k in G such that ess $\inf_x k^{-1} \sum_1^k 1_B(b_j x) \ge d/2$ i.e. locally a.e. in x one has $k^{-1} \sum_1^k 1_{b_j^{-1}B}(x) \ge d/2 > 0$. But this contradicts the fact that $A = G \sim \bigcup_1^k b_j^{-1}B$ is open dense, hence of nonzero Haar measure and for $x \in A$, $k^{-1} \sum_1^k 1_B(b_j x) = 0$. Using Remark 3 above one could easily show that in fact $\phi(B) = 0$ for some two sided invariant mean ϕ on $L^\infty(G)$.

REMARKS. Let G be a locally compact amenable group with $G_0 \subset G$ an open subgroup. Let λ (λ_0) be the Haar measures on G (G_0). As known and easily shown the λ_0 measurable sets comprise exactly the λ measurable sets of G which are included in G_0 . We can and shall choose λ_0 to be the restriction of λ to G_0 . (We use the terminology of [7].)

For $f \in L^{\infty}(G)$ define $(\pi f)(x) = f(x)$ for $x \in G_0$. Then π can be considered as a map onto $L^{\infty}(G_0)$. If $v \in L^{\infty}(G_0)^*$ is left invariant and $f \in L^{\infty}(G)$, let $(S_v f)(z) = v(\pi l_z f)$ for all $z \in G$. Let $\{z_\alpha G_0\}_{\alpha \in I}$ be a fixed decomposition of G into left cosets w.r.t. G_0 . Then, the bounded function, $S_v f$ is constant on each $z_\alpha G_0$ (as known) since if $z = z_\alpha a$, $a \in G_0$ then $S_v f(z_\alpha a) = v(\pi l_{z_\alpha} f) = v(l_a(\pi l_{z_\alpha} f)) = S_v f(z_\alpha)$, since $a \in G_0$. This implies that $S_v f \in UCB_l(G)$ (i.e. is left uniformly continuous as in [7] for all $f \in L^{\infty}(G)$ and left invariant $v \in L^{\infty}(G_0)^*$. This is the case since for all $z \in G$, $x \in G_0$, $S_v f(zx) - S_v f(z) = 0$ and G_0 is open.

Choose and fix now some LIM, μ_0 on C(G) and define for any left invariant $\nu \in L^{\infty}(G_0)^*$, $T\nu \in L^{\infty}(G)^*$, by $T\nu(f) = \mu_0(S_{\nu}f)$.

As known and readily checked T maps the set of left invariant elements [LIM] of $L^{\infty}(G_0)^*$ into the set of left invariant elements [LIM] of $L^{\infty}(G)^*$. The above is a refinement of a construction due to M. M. Day [1, p. 533]. In the above context we have the

PROPOSITION 4. Let G be a locally compact amenable group and $G_0 \subset G$ an open normal subgroup.

If $Tv \in TLIM(G)$ for some $v \in LIM(G_0)$ then $v \in TLIM(G_0)$.

PROOF. If $f \in L^{\infty}(G_0)$ denote by f_1 its $\{z_{\alpha}\}$ periodic extension i.e. $f_1(z_{\alpha}x)=f(x)$ for all $x \in G_0$ and all α . (Note that $\{z_{\alpha}\}$ are fixed.) It is clear that f_1 is measurable (since it needs to be so only on compacta [7, p. 131], and G_0 is open).

If $z \in z_{\sigma}G_0$ then

(*)
$$S_{\nu}(f_1)(z) = S_{\nu}(f_1)(z_{\alpha}) = \nu(\pi l_{z_{\alpha}} f_1) = \nu(f)$$

since if $x \in G_0$ then $(\pi l_{z_{\alpha}} f_1)(x) = f_1(z_{\alpha} x) = f(x)$. Thus $(Tv) f_1 = \mu_0(S_v f_1) = \mu_0(v(f) \cdot 1_G) = vf$.

Fix now $\phi_0 \in P(G)$ with support included in G_0 . Then for $f \in L^{\infty}(G_0)$ and $x \in G_0$ one has:

$$\begin{split} l_{z_{\alpha}}(\phi_{0}*f_{1})(x) &= \int f_{1}(y^{-1}z_{\alpha}x)\phi_{0}(y) \ dy \\ &= \int f_{1}((z_{\alpha}yz_{\alpha}^{-1})^{-1}z_{\alpha}x)\phi_{0}(z_{\alpha}yz_{\alpha}^{-1}) \ \Delta(z_{\alpha}^{-1}) \ dy \\ &= \int_{G_{0}} f_{1}(z_{\alpha}y^{-1}x)\phi_{0}(z_{\alpha}yz_{\alpha}^{-1}) \ \Delta(z_{\alpha}^{-1}) \ dy \\ &= \int_{G_{0}} f(y^{-1}x)\phi_{0}(z_{\alpha}yz_{\alpha}^{-1}) \ \Delta(z_{\alpha}^{-1}) \ dy = (\Psi_{\alpha}\circledast f)(x) \end{split}$$

where $\Psi_{\alpha}(y) = \phi_0(z_{\alpha}yz_{\alpha}^{-1}) \Delta(z_{\alpha}^{-1})$ for $y \in G_0$, thus $\Psi_{\alpha} \in P(G_0)$ and where \circledast stands for convolution in $L_1(G_0)$. Note, that since G_0 is normal $\phi_0(z_{\alpha}yz_{\alpha}^{-1})$ has support included in G_0 .

It follows that if $z \in z_{\alpha}G_0$ then

$$S_{\nu}(\phi_0 * f_1)(z) = S_{\nu}(\phi_0 * f_1)(z_{\alpha})$$

= $\nu \pi l_{z_{\alpha}}(\phi_0 * f_1) = \nu(\Psi_{\alpha} \circledast f) = \nu(\phi_0 \circledast f).$

Note that we have used in the last equality only the fact that $v \in LIM(G_0)$. From it alone, it follows (see Greenleaf [6, proof of Lemma 222, p. 27]) that $v(\phi \circledast f) = v(\Psi \circledast f)$ for all $\phi, \Psi \in P(G_0)$.

Hence
$$T\nu(\phi_0 * f_1) = \mu_0(S_\nu(\phi_0 * f_1)) = \nu(\phi_0 \circledast f)$$
.

But by assumption $Tv \in TLIM$. Thus $Tv(\phi_0 * f_1) = (Tv)f_1 = vf$ and hence, for all $f \in L^{\infty}(G_0)$, $v(\phi_0 \circledast f) = v(f)$. The above remark implies that $v \in TLIM(G_0)$ and finishes this proof.

- Theorem 2. Let G be a locally compact group which is amenable as a discrete group. Assume that G contains a σ -compact open normal subgroup. If LIM(G) = TLIM(G) then G is discrete.
- REMARK. 1. If G has equivalent left and right uniform structures then G contains a neighborhood U of the identity with compact closure such that $xUx^{-1}=U$ for all $x \in G$. Thus $G_0=\bigcup_{-\infty}^{\infty} U^n$ is normal σ -compact and open. In particular the theorem certainly holds true for all locally compact abelian groups G. It also holds true for all σ -compact G which are amenable as discrete groups (take $G=G_0$).
- 2. We could have assumed in this theorem that G is a locally compact amenable group and the open normal σ -compact G_0 is amenable as discrete. This however readily implies that G is amenable as discrete and we would not gain anything. (The discrete G/G_0 and G_0 with discrete topology are amenable hence so is G with discrete topology.)
- **PROOF.** If TLIM(G) = LIM(G) then $TLIM(G_0) = LIM(G_0)$ since $Tv \in TLIM(G) = LIM(G)$ for all $v \in LIM(G_0)$. Thus $v \in TLIM(G_0)$ by the previous proposition. We use now Theorem 1 and get that G_0 is discrete. Thus if $x \in G_0$, $\{x\}$ is open in G_0 hence in G. Hence G is discrete.

The following is an interpretation of our and some known related results from the point of view of harmonic analysis on locally compact groups.

Let H [H_c] denote the linear span of $\{f-l_xf; f \in L^{\infty}(G), x \in G\}$ [$\{f-\phi*f; f \in L^{\infty}(G), \phi \in P(G)\}$]. If $A \subseteq L^{\infty}(G)$ denote by \bar{A} [\bar{A}^*] its norm [w^*] closure.

We need the following known remark whose proof uses a trick due to I. Namioka [9].

REMARK. Let Ψ , Ψ_1 , $\Psi_2 \in L^{\infty}(G)^*$, $\phi \in P(G)$ and define $(L_{\phi}\Psi)f = \Psi(\phi * f)$ for $f \in L^{\infty}(G)$. Let $\Psi_1 \vee \Psi_2 = \max(\Psi_1, \Psi_2)$ in the lattice $L^{\infty}(G)^*$ and $\Psi^+ = \Psi \vee O$, $\Psi^- = (-\Psi) \vee O$. If $\Psi \in L^{\infty}(G)^*$ satisfies $L_{\phi}\Psi = \Psi$ for all $\phi \in P(G)$, then so do Ψ^+ and Ψ^- : If $\phi \in P(G)$, $L_{\phi}(\Psi \vee O) \geq (L_{\phi}\Psi \vee L_{\phi}O) = \Psi \vee O = \Psi^+$. So $L_{\phi}\Psi^+ = \Psi^+ \geq 0$. But $(L_{\phi}\Psi^+ = \Psi^+)(1) = 0$. Thus $L_{\phi}\Psi^+ = \Psi^+$. (Same true, if L_{ϕ} is replaced by I_a^* for all $a \in G$.)

PROPOSITION 5. (a) Let G be compact and infinite. Then

$$\bar{H} \subset \bar{H}_c = \bar{H}_c^* = \bar{H}^* = \{ f \in L^\infty(G); \lambda f = 0 \}.$$

If G is abelian (or even amenable as a discrete group) then $\bar{H} \neq \bar{H}_c$.

- (b) Let G be a noncompact locally compact group. Then $\bar{H} \subseteq \bar{H}_c \subseteq \bar{H}^* = \bar{H}_c^* = L^{\infty}(G)$. Furthermore
 - (i) $\bar{H}_c = L^{\infty}(G)$ iff $\bar{H} = L^{\infty}(G)$ iff G is not amenable (i.e. $LIM = \emptyset$).
- (ii) If G is σ -compact amenable then $L^{\infty}(G)/\bar{H}_c$ is a nonseparable Banach space.
- (iii) If G is a σ -compact and amenable as discrete or amenable and containing such an open normal subgroup (in particular if G is locally compact abelian), then $\bar{H} = \bar{H}_c$ iff G is discrete.
- PROOF. (a) $\bar{H} \subset \bar{H}_c$ is due to the fact that TLIM \subset LIM [6, p. 25], the remark above and the Hahn-Banach theorem (this part with G not necessarily compact). Thus $\bar{H}^* \subset \bar{H}_c^*$. If the inclusion were proper then there would exist some $\phi \in L_1(G)$ such that $\phi(H) = 0$ but $\phi(g) \neq 0$ for some $g \in H_c$. But then ϕ is left invariant and in $L_1(G)$ hence $\phi = c\lambda$ for some scalar $c \neq 0$. Hence $\phi(H_c) = \lambda(H_c) = 0$ which cannot be. So $\bar{H} \subset \bar{H}_c \subset \bar{H}_c^* = \bar{H}_c^* \subset \{f \in L^\infty(G); \lambda f = 0\}$.

That $\bar{H}_c = \{ f \in L^{\infty}(G); \lambda f = 0 \}$ is a consequence of Theorem 7.3, p. 360 of J. C. S. Wong [10] or can directly be proven. The rest of (a) is implied by the main theorem of this paper.

(b) If $\bar{H}^* \neq L^{\infty}(G)$ there would exist $0 \neq \phi \in L_1(G)$ such that $\phi(H) = 0$. But then ϕ is left invariant hence so are ϕ^+ , ϕ^- and $\phi^+ \neq 0$ or $\phi^- \neq 0$. Assuming that $\phi^+ \neq 0$, $\mu(A) = \int_A \phi^+ d\lambda$ is a measure on the Borel sets of G satisfying all the conditions in Hewitt-Ross [7, p. 194]. Hence $\mu = c\lambda$ for some c > 0 (since $\mu \neq 0$).

Since $\mu(G) < \infty$, $\lambda(G) < \infty$ so G is compact. That (b)(i) holds is known and readily shown. (b)(ii) is shown as follows: If $L^{\infty}(G)/\bar{H}_c$ would be separable there would exist a sequence $\{f_n\} \subseteq L^{\infty}(G)$ such that (if B is the linear span of $\{f_n\}$) $\bar{H}_c + B$ is norm dense in $L^{\infty}(G)$ (see [4, p. 63]). But $\bar{H}_c = \{f \in L^{\infty}(G); \ \Psi(f) = 0 \ \text{for all } \Psi \in \text{TLIM} \}$ Wong [10, p. 360]. Fix now some $\Psi_0 \in \text{TLIM}$ and let $\Psi_0 f_n = \alpha_n$. Then $\{\Psi_0\} = \{\Psi \in \text{TLIM}; \ \Psi f_n = \alpha_n n \ge 1\}$ since any Ψ which belongs to the right side will coincide with Ψ_0 on $\bar{H}_c + B$ hence on $L^{\infty}(G)$. We apply now [4, Theorem 5, p. 53] with K = P(G) hence $A = \{\Psi \in \text{TLIM}; \ \Psi(f_n - \alpha_n) = 0\} = \{\Psi_0\}$ is norm separable. Thus G is compact. (b) (iii) is just our main theorem and the fact that $\bar{H} = \bar{H}_c$ iff LIM=TLIM (by our remark above and the Hahn-Banach theorem).

MAIN CONJECTURE. Let G be any amenable locally compact group. If G is noncompact then $L^{\infty}(G)/\bar{H}_c$ is nonseparable. If G is nondiscrete then \bar{H}_c/\bar{H} is nonseparable.

Addition. In the meantime W. Rudin sent us a preprint of a paper of his, in which he proves Theorem 2 without the assumption that (*) "G contains an open σ -compact normal subgroup", but with the assumption

that G is amenable as discrete. His proof is different from ours and uses harmonic analysis type arguments. After reading his manuscript we found the following easy argument which removes the restriction (*).

PROPOSITION. Let G_0 be an open noncompact subgroup of G, and

$$G = \bigcup_{\alpha \in I} x_{\alpha} G_0, \quad x_{\alpha} G_0 \cap x_{\beta} G_0 = \emptyset \quad \text{if } \alpha \neq \beta.$$

If $A_0 \subseteq G_0$ is such that $\lambda(A_0) < \infty$ (λ —the Haar measure on G) then for all $\phi \in TRIM$, $\phi(\bigcup_{\alpha \in I} x_\alpha A_0) = 0$.

PROOF. Let $B_n \subseteq G_0$ be compact with $\lambda(B_n) = a_n \uparrow \infty$ and let $f_n = a_n^{-1} 1_{B_n}$, $A = \bigcup_a x_a A_0$. Then

$$1_{A} * f_{n}(x) = a_{n}^{-1} \int 1_{A}(y) 1_{B_{n}}(y^{-1}x) dy$$

$$= a_{n}^{-1} \lambda(xB_{n} \cap A) \leq a_{n}^{-1} \lambda(xG_{0} \cap A)$$

$$= a_{n}^{-1} \lambda(x_{2}G_{0} \cap A) = a_{n}^{-1} \lambda(x_{2}A_{0}) = a_{n}^{-1} \lambda(A_{0}),$$

for some (hence all) $\alpha \in I$.

If $\phi \in \text{TRIM}$ then $\phi(A) = \phi(1_A * f_n) \leq a_n^{-1} \lambda(A_0) \rightarrow 0$.

REMARK. If $\Psi \in \text{TLIM}$, then $\psi(\bigcup_{\alpha} A_0^{-1} x_{\alpha}^{-1}) = 0$. (See [4, pp. 49-50].) To remove restriction (*) on G, let G_0 be any σ -compact, noncompact, open subgroup of G, if G is noncompact, and $G = G_0$, if G is compact. Let $A_0 \subseteq G_0$ be open dense with $\lambda(A_0) \leq \frac{1}{2}$ and $A = \bigcup_{\alpha} A_0^{-1} x_{\alpha}^{-1}$ (x_{α} as above), $A = A_0$ if G is compact. Let $B = G \sim A$. Then $\psi(B) = 1$ for all $\psi \in \text{TLIM}$, if G is not compact, $\lambda(B) \geq \frac{1}{2}$ if G is compact. B is closed nowhere dense. Continue now as in the proof of Theorem 1.

REFERENCES

- 1. M. M. Day, Amenable semigroups, Illinois J. Math 1 (1957), 509-544. MR 19, 1067.
- 2. E. Følner, On groups with full Banach mean values, Math. Scand. 3 (1955), 243-254. MR 18, 51.
- 3. —, Note on groups with and without full Banach mean value, Math. Scand. 5 (1957), 5-11. MR 20 #1237.
- 4. E. Granirer, Exposed points of convex sets and weak sequential convergence, Mem. Amer. Math. Soc. No. 123 (1972).
- 5. —, On finite equivalent invariant measures for semigroups of transformations, Duke Math. J. 38 (1971), 395-408. MR 44 #404.
- 6. F. P. Greenleaf, *Invariant means on topological groups and their applications*, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776.

- 7. E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York, Springer-Verlag, Berlin, 1963. MR 28 #158.
- 8. I. Namioka, Folner's conditions for amenable semigroups, Math Scand. 15 (1964), 18-28. MR 31 #5062.
- 9. —, On certain actions of semigroups on L-spaces, Studia Math. 29 (1967), 63-77. MR 36 #6910.
- 10. J. C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363. MR 40 #2781.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA