ON AKCOGLU AND SUCHESTON'S OPERATOR CONVERGENCE THEOREM IN LEBESGUE SPACE

RYOTARO SATO

ABSTRACT. Let T be a bounded linear operator on an L_1 -space and τ its linear modulus. It is proved that if the adjoint of τ has a strictly positive subinvariant function then the following two conditions are equivalent: (i) T^n converges weakly; (ii) $(1/n) \sum_{i=1}^n T^{k_i}$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

1. **Introduction.** Let (X, \mathcal{M}, m) be a σ -finite measure space and $L_p(X) = L_p(X, \mathcal{M}, m)$, $1 \le p \le \infty$, the usual (complex) Banach spaces. If $A \in \mathcal{M}$ then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X-A. Let T be a bounded linear operator on $L_1(X)$ and τ its linear modulus [2]. Thus τ is a positive linear operator on $L_1(X)$ such that

$$\|\tau\|_1 = \|T\|_1$$
 and $\tau g = \sup\{|Tf|; f \in L_1(X) \text{ and } |f| \le g\}$

for any $0 \le g \in L_1(X)$. The adjoint of T is denoted by T^* . Clearly T is a contraction if and only if $\tau^*1 \le 1$. In [1] Akcoglu and Sucheston proved that if T is a contraction then the following two conditions are equivalent: (i) T^n converges weakly; (ii) $(1/n) \sum_{i=1}^n T^{k_i}$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers. In this note we shall prove that if τ^* has a strictly positive subinvariant function in $L_\infty(X)$ then the equivalence of (i) and (ii) still holds. Applying this result, we obtain that if T is a positive linear operator on $L_1(X)$ such that $\sup_n \|(1/n) \sum_{k=0}^{n-1} T^k\|_1 < \infty$ and also such that $T^n f$ converges weakly for any $f \in L_1(X)$ with $\int f dm = 0$ and if T^* has a strictly positive subinvariant function in $L_\infty(X)$, then for any $f \in L_1(X)$ with $\int f dm = 0$ and any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers, $(1/n) \sum_{i=1}^n T^{k_i} f$ converges strongly. This is a generalization of another result of Akcoglu and Sucheston [1].

Received by the editors January 17, 1973.

AMS (MOS) subject classifications (1970). Primary 47A35.

Key words and phrases. Bounded linear operator, linear modulus of a bounded linear operator, weak and strong convergence.

[@] American Mathematical Society 1973

2. **Results.** Throughout this section we shall assume that there exists a strictly positive function $s \in L_{\infty}(X)$ with $\tau^* s \leq s$. In the proofs we shall also assume that (X, \mathcal{M}, m) is a finite measure space, since the L_1 of a σ -finite measure space is isometric to the L_1 of a finite measure space (cf. [1]).

THEOREM 1. The following two conditions are equivalent:

- (i) If $f \in L_1(X)$ then $T^n f$ converges weakly;
- (ii) If $f \in L_1(X)$ then $(1/n) \sum_{i=1}^n T^{k_i} f$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

PROOF. We first prove that (i) implies (ii). For $sf \in L_1(X)$, where $f \in L_1(X)$, define V(sf) = sTf. Since $\{sf; f \in L_1(X)\}$ is a dense subspace of $L_1(X)$ in the norm topology and $\|V(sf)\|_1 \le \|sf\|_1$ (cf. [3]), V may be considered to be a linear contraction on $L_1(X)$. Since $V^n(sf) = sT^nf$ for any $n \ge 0$ and T^nf converges weakly, it follows that $V^n(sf)$ converges weakly. Thus, since V is a contraction, it is easily seen that for any $A \in \mathcal{M}$ the limit $\mu(A) = \lim_n \int_A V^n f \, dm$ exists. Since the measure m is finite, the Vitali-Hahn-Saks theorem implies that μ is a countably additive measure on \mathcal{M} absolutely continuous with respect to m. Therefore there exists a function $g \in L_1(X)$ such that $\mu(A) = \int_A g \, dm$ for any $A \in \mathcal{M}$. It follows that $V^n f$ converges weakly to g. Thus, by Theorem 2.1 of [1], for any $f \in L_1(X)$ and any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers,

$$\frac{1}{n}\sum_{i=1}^{n}V^{ki}(sf)=\frac{1}{n}s\left(\sum_{i=1}^{n}T^{ki}f\right)$$

converges strongly. Let $\lim_n \|(1/n)s(\sum_{i=1}^n T^{ki}f) - f_0\|_1 = 0$ for some $f_0 \in L_1(X)$ and let $\varepsilon > 0$ be arbitrarily fixed. Since T^nf converges weakly, there exists a positive number δ such that $A \in \mathcal{M}$ and $m(A) < \delta$ imply $\int_A |T^nf| dm < \varepsilon$ for any $n \ge 0$. Choose $\eta > 0$ such that $m(\{x; s(x) < \eta\}) < \delta$ and $\int_{\{x: s(x) < \eta\}} |f_0| dm < \varepsilon$, and put $A = \{x; s(x) < \eta\}$. Then

$$\left\| \frac{1}{n} \sum_{i=1}^{n} T^{k_{i}} f - \frac{1}{m} \sum_{j=1}^{m} T^{k_{j}} f \right\|_{1} \leq \left\| \frac{1}{n} \sum_{i=1}^{n} 1_{A} T^{k_{i}} f \right\|_{1} + \left\| \frac{1}{m} \sum_{j=1}^{m} 1_{A} T^{k_{j}} f \right\|_{1}$$

$$+ \left\| \frac{1}{n} \sum_{i=1}^{n} 1_{X-A} T^{k_{i}} f - \frac{1}{m} \sum_{j=1}^{m} 1_{X-A} T^{k_{j}} f \right\|_{1}$$

$$< 2\varepsilon + \left\| \frac{1}{n} \sum_{i=1}^{n} 1_{X-A} T^{k_{i}} f - 1_{X-A} \frac{1}{s} f_{0} \right\|_{1}$$

$$+ \left\| \frac{1}{m} \sum_{i=1}^{m} 1_{X-A} T^{k_{i}} f - 1_{X-A} \frac{1}{s} f_{0} \right\|_{1}$$

1973]

and

$$\left\| \frac{1}{n} \sum_{i=1}^{n} 1_{X-A} T^{ki} f - 1_{X-A} \frac{1}{s} f_{0} \right\|_{1}$$

$$\leq \frac{1}{\eta} \left\| \frac{1}{n} s \left(\sum_{i=1}^{n} 1_{X-A} T^{ki} f \right) - 1_{X-A} f_{0} \right\|_{1} \to 0$$

as $n \to \infty$, from which we observe that $(1/n) \sum_{i=1}^{n} T^{k_i} f$ is a Cauchy sequence in $L_1(X)$, and hence $(1/n) \sum_{i=1}^{n} T^{k_i} f$ converges strongly.

Conversely if (ii) holds, then it follows easily that $\sup_n \|T^n\|_1 < \infty$ and that for any $f \in L_1(X)$ and any $A \in \mathcal{M}$, $\lim_n \int_A T^n f \, dm$ exists, and hence $T^n f$ converges weakly. This completes the proof of Theorem 1.

THEOREM 2. Let T be a positive linear operator on $L_1(X)$ with

$$\sup_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^{k} \right\|_{1} < \infty$$

and suppose $T^*s \leq s$ for some $0 < s \in L_{\infty}(X)$. Then the following two conditions are equivalent:

- (i) If $f \in L_1(X)$ and $\int f dm = 0$, then $T^n f$ converges weakly;
- (ii) If $f \in L_1(X)$ and $\int f dm = 0$, then for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers, $(1/n) \sum_{i=1}^n T^{k_i} f$ converges strongly.

PROOF. Suppose (i) holds. It is known [3] that if T has no nontrivial nonnegative invariant function in $L_1(X)$, then the operator V introduced above also has no nontrivial nonnegative function in $L_1(X)$. Thus it follows from [1] that, if $T^n f$ converges weakly then

$$\lim_{n} \|V^{n}(sf)\|_{1} = \lim_{n} \|sT^{n}f\|_{1} = 0.$$

Let $\varepsilon>0$ be arbitrarily fixed, and let δ be a positive number such that $A \in \mathcal{M}$ and $m(A) < \delta$ imply $\int_A |T^n f| dm < \varepsilon$ for any $n \ge 0$. Choose $\eta > 0$ such that $m(\{x; s(x) < \eta\}) < \delta$, and put $A = \{x; s(x) < \eta\}$. Then

$$\begin{split} \|T^n f\|_1 & \leq \|\mathbf{1}_A T^n f\|_1 + \eta^{-1} \|\mathbf{1}_{X-A} s T^n f\|_1 \\ & < \varepsilon + \eta^{-1} \|s T^n f\|_1 \end{split}$$

and $||sT^nf|| \rightarrow 0$ as $n \rightarrow \infty$, thus $\lim_n ||T^nf||_1 = 0$.

If there exists $0 \le h \in L_1(X)$ with $||h||_1 > 0$ and Th = h, then it follows from [1] that for any $f \in L_1$, $T^n f$ converges weakly. Thus the strong convergence of $(1/n) \sum_{i=1}^n T^{k_i} f$ for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers follows from Theorem 1.

Clearly (ii) implies (i), and the proof is complete.

BIBLIOGRAPHY

- 1. M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Periodica Math. Hungarica 2 (1972), 235-244.
- 2. R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553-559. MR 29 #1543.
- 3. R. Sato, Ergodic properties of bounded L_1 -operators, Proc. Amer. Math. Soc. 39 (1973), 540-546.

DEPARTMENT OF MATHEMATICS, JOSAI UNIVERSITY, SAKADO, SAITAMA 350-02, JAPAN