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ON  AKCOGLU  AND  SUCHESTON'S   OPERATOR

CONVERGENCE  THEOREM
IN  LEBESGUE  SPACE

RYOTARO  SATO

Abstract. Let T be a bounded linear operator on an Lr-space

and t its linear modulus. It is proved that if the adjoint of t has a

strictly positive subinvariant function then the following two

conditions are equivalent : (i) T" converges weakly; (ii) (l/«)2<Li Tk>

converges strongly for any strictly increasing sequence k1, k2, ■ ■ ■ of

nonnegative integers.

1. Introduction. Let (X, J(, m) be a a-finite measure space and

Lv(X)=Lt(X, ^(,m), 1^/j^oo, the usual (complex) Banach spaces. If

A 6 Jt then 1A is the indicator function of A and LP(A) denotes the Banach

space of all Li>(A')-functions that vanish a.e. on X— A. Let 7" be a bounded

linear operator on LX(X) and r its linear modulus [2]. Thus t is a positive

linear operator on LX(X) such that

Mi-mi    and    rg = stip{\Tf\;feLx(X) and \f\^g\

for any O^g e LX(X). The adjoint of T is denoted by T*. Clearly F is a

contraction if and only if t*15¡1. In [1] Akcoglu and Sucheston proved

that if Fis a contraction then the following two conditions are equivalent:

(i) Tn converges weakly; (ii) (1/«) *££., T** converges strongly for any

strictly increasing sequence kx, k2, ■ ■ ■ of nonnegative integers. In this

note we shall prove that if t* has a strictly positive subinvariant function

in Loû(X) then the equivalence of (i) and (ii) still holds. Applying this

result, we obtain that if Fis a positive linear operator on LX(X) such that

sup„ ||(1/«) 2t=o P*1li< °° ar)d also such that Tnf converges weakly for any

feLx(X) with ¡fdm=Q and if T* has a strictly positive subinvariant

function in L0O(X), then for any/e LX(X) with jfdm = 0 and any strictly

increasing sequence kx, k2, ■ • ■ of nonnegative integers, (l/n) ~2"=xTkf

converges strongly. This is a generalization of another result of Akcoglu

and Sucheston [1].
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2. Results. Throughout this section we shall assume that there exists

a strictly positive function s e LX(X) with t*s^s. In the proofs we shall

also assume that (X, JÍ, m) is a finite measure space, since the Lx of a

r/-finite measun, space is isometric to the Lx of a finite measure space

(cf. [1]).

Theorem 1.    The following two conditions are equivalent:

(i) If f e LX(X) then Tnf converges weakly;

(ii) If feLx(X) then (l/n) ^2j=xTkf converges strongly for any strictly

increasing sequence kx, k2, • • • of nonnegative integers.

Proof. We first prove that (i) implies (ii). For sfeLx(X), where fe

LX(X), define V(sf)=sTf Since {sffe LX(X)} is a dense subspace of LX(X)

in the norm topology and || F(.s/')l|1^||s/'||1 (cf. [3]), Kmay be considered

to be a linear contraction on LX(X). Since Vn(sf)=sTnf for any «^0 and

Tnf converges weakly, it follows that Vn(sf) converges weakly. Thus,

since V is a contraction, it is easily seen that for any A e J( the limit

p(A)=hn\n^A Vnf dm exists. Since the measure m is finite, the Vitali-

Hahn-Saks theorem implies that p is a countably additive measure on ^K

absolutely continuous with respect to m. Therefore there exists a function

g eLx(X) such that p(A)=¡Agdm for any A e Jt. It follows that Vnf

converges weakly to g. Thus, by Theorem 2.1 of [1], for any/e LX(X) and

any strictly increasing sequence kx, k2, ■ ■ ■ of nonnegative integers,

in i       / n \

n~i n   \i=x       I

converges strongly. Let lim„||(l/n)j(2"=i Tkf)—/0||1 = 0 for some /0 e

LX(X) and let e>0 be arbitrarily fixed. Since Tnf converges weakly,

there exists a positive number ô such that Ae^( and m(A)<.b imply

Sa l^"/l dm<.e for any «^0. Choose »i>0 such that m([x; s(x)<r¡})<.o

and Uz-Mx)<*} l/ol dm<e, and put A={x; s(x)<r¡}. Then

|    n i     m

m y=i

<
1 ̂

n ¿=i

+

2 U?*'/  +   - 2 ^T*'/
m ¡_;=l

";=i

+ -2Yx~ATk'f-lX-A-fo\\
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and

1   "£> L 1
-2XX-ATk'f-\X-A-h
n ~1 s

¡^(î1*-^7*'/) -l.v^/o 0

as w—>-oo, from which we observe that (1/«) 2JLi Tkf is a Cauchy sequence

in LX(X), and hence (Ijn) 2?-i F*1/converges strongly.

Conversely if (ii) holds, then it follows easily that sup„ ||F™||,<oo and

that for any f e LX(X) and any A eJ¿, lim„ J{ Tnf dm exists, and hence

Tnf converges weakly. This completes the proof of Theorem 1.

Theorem 2.    Let T be a positive linear operator on LX(X) with

sup i y F
n ¿=

<  00

and suppose T*s^s for some 0<s e LX(X). Then the following two con-

ditions are equivalent :

(i) IffeLx(X) and§fdm=0, then T"f converges weakly;

(ii) IffeLx(X) and J fdm=0, then for any strictly increasing sequence

kx, k2, ■ ■ ■ of nonnegative integers, (1/fl) 2?=i Tkf converges strongly.

Proof. Suppose (i) holds. It is known [3] that if T has no nontrivial

nonnegative invariant function in LX(X), then the operator V introduced

above also has no nontrivial nonnegative function in LX(X). Thus it

follows from [1] that, if Tnf converges weakly then

lim IIK"^/)!!, = lim |!sT"/lli = 0.
n n

Let e>0 be arbitrarily fixed, and let ó be a positive number such that

A eJ( and m(A)<6 imply )A \Tnf\ dm<e for any «^0. Choose r/>0

such that m([x\ s(x)<r)})<ô, and put A={x; s(x)<r¡}. Then

ITVhaiuryit + ̂ lix-^ryii

<e + 7f1||sF'1/||1

and \\sTnf\\->0 as n--oo, thus lim„ ||Fn/lli=0.

If there exists O^h e LX(X) with ||«||,>0and Th=h, then it follows from

[1] that for anyfe Lx, Tnf converges weakly. Thus the strong convergence

of (1/») 2t"=i Tkf for any strictly increasing sequence kx, k2, • • ■ of non-

negative integers follows from Theorem 1.

Clearly (ii) implies (i), and the proof is complete.
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