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A  GENERALIZATION  OF  TIETZE'S  THEOREM
ON  CONVEX  SETS  IN  R3

NICK  M.  STAVRAKAS

Abstract. Let S<= R3 and let C(S) denote the points of local

convexity of 5. One interesting result which is proven is

Theorem. Let Sc R3 be such that Sa cl(C(S)), S not planar and

C(S) is connected. Then S<=cl(int S).

1. Introduction. F. A. Valentine in [8] proves that if S is a closed con-

nected subset of Rd whose points of local nonconvexity are decomposable

into n convex sets, then S is 2«+1 polygonally connected. Guay and Kay

in [2] show that if 5 is a closed connected subset of a topological vector

space such that 5 has exactly n points of local nonconvexity and such that

the points of local convexity of S are connected, then S is expressible as a

union of «+1 or fewer closed convex sets. The purpose of this paper is to

give a result which is in the vein of both the latter mentioned results and

which generalizes Tietze's theorem on convex sets in R3. For related results

see [1], [2], [3], [4], [5], [6] and [8].

2. Notations and main results. If £<= Rd, the symbols C(S) and L(S)

denote the points of local convexity of S and points of local nonconvexity

of S, respectively. The symbols int 5 and cl S denote the interior of S and

the closure of S, respectively.

Theorem 1.    Let S<= R3 be such that

(1) ^cl(C(S)),

(2) S not planar,

(3) C(S) is connected.

Then S<=cl(int S).

Proof. We first prove C(S)ccl(int S). Suppose not. Then there exists

x e C(S) and an open set Mx about x such that MXC^S is convex and

dim(M~xC\S)=k<3. Let L be the subspace generated by MxnS. Let J(=

{M\M is open in LC\S, Mxr\S^ M and if y e M, there exists an open set

Nv about y such that NynS is convex and dim(Nyr\S)=k}. Note^V 0

since MxC\Se^(. Partially order J( by set inclusion. Using a standard
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Zorn's lemma argument, it may be shown J( has a maximal element A.

Since S is not planar, there exists z e S, with z $ L. Select a point q as

follows: If z e C(S), set z=q. If z e L(5), since Sccl(C(S)), there exists a

point r e C(S), with r ^ L. Then set 9=/". Since C(S) is connected and

locally convex, C(S) is polygonally connected. Let / be a simple polygonal

arc from x to q in C(S). Regarding x as the starting point of I, let w be the

last point of / in cl A. Since / c C(S), there exists an open set Mm such that

NmnS is convex. It is clear that dim(NmnS)~^-k. We consider two cases.

Case 1. dim(NmnS)=k. Then NmnScL and since NmnS contains

points of / not in A, we have NmnA <^NmnS. Then /)U(/VmnS) e Jt',

contradicting the maximality of A.

Case 2. dim(NmnS)>k. Now since NmnAj¿0 , we may choose

p e NmnA. Then for any open set Nv such that NpnS is convex,

dim(AfpnS')^dim(A/mn5)>Ä:, contradicting that A e Jt.

Thus C(S)czc\(int S) and the latter with hypothesis (1) imply the

Theorem.

The following theorem is the main result of this paper.

Theorem 2. Let Sc R3 be closed, S not planar. Suppose L(S) decom-

posable into n closed line segments [a¡b¡\, 1 ̂ i^n. Suppose C(S) is connected

and that given x, y e C(S) that x and y may be joined by an arc l c S such

that I is contained in a hyperplane. Then S is n+\ polygonally connected.

Proof. The fact that L(S) is decomposable into n closed line segments

easily implies that S<=d(C(S)). Let x, y e S and let M'xy denote the set of

all hyperplanes containing x and y. Define a set F by F={(x,y)\(x,y) e

C(S)xC(S) and if Hxy e ,Wxy, dim(/4vn[aA])^0 V/, 0^«}, where in

the definition of Fwe take dim 0 = — 1. Let (x,y) e F. Then by hypothesis

there exists Hxy e,Wxy and an arc /<=S from x to y such that l<^Hxy.

Let C be the component of HxynS which contains x and y. Since

dim(Hxyn[aibi])^0, V/, C has at most n points of local nonconvexity

and by a result of Valentine [8],Cis/7+l polygonally connected. Thusx and

y may bejoinedby ann+\ polygonal arc lying in S. By Theorem 1, Fis dense

in SxS, and the theorem follows from a standard limiting argument in the

Hausdorff metric.
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