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ANALYTIC  FUNCTIONS,   IDEALS,

AND  DERIVATION   RANGES1

R.   E.   WEBER

Abstract. When A is in the Banach algebra .^(>f) of all

bounded linear operators on a Hilbert space .W, the derivation

generated by A is the bounded operator A4 on .¡S(.W) defined by

àA(X) = AX—XA. It is shown that (i) if B is an analytic function of

A, then the range of AÄ is contained in the range of i.(; (ii) if U is

a nonunitary ¡sometry, then the range of A, contains nonzero

left ideals; (iii) if U and V are isometries with orthogonally com-

plemented ranges, then the span of the ranges of the corresponding

derivations is all of 'A(.W).

1. It follows from the elementary properties of derivations that the

set of all B such that .^(A/()c;f(A() is a subalgebra of :$(,#). (See

[9, p. 4].) Therefore if B is a polynomial in A, then ¿#(A.n)c 3g(AA).

We will generalize this to analytic functions. In the following, J/f denotes

a separable complex Hilbert space.

Theorem 1. Let A e -JA(,W ) and let f(z) be a function analytic on an

open set containing a(A). If B=f(A), then .^(A^cr^A ,).

For the proof we need the following result on analytic functions of

commuting operators.

Let sí? be a commutative Banach algebra with maximal ideal space

~# t/ and let al and a2 belong to sä'. The joint spectrum of ax and a2 is the

set {(<7>(a,), cp(a2))\ cp e Jt"rJ\ and is denoted by a(ax, at). (See Gamelin

[3, p. 76] for a discussion of the joint spectrum and the proof of the

following lemma.)

Lemma 1. There exists a unique rule assigning to every ordered pair

(alt a2) of elements in sé and to every complex valued function of two

complex variables f(z, w) analytic in a neighborhood of a (a x, a2), an element
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f(ax, a2) e sé satisfying the following conditions:

(a) lff(z, w)=2 c^z'M'5' is a polynomial, then f(ax, a2)=^_ CjClpXa'.^.

(b) If' f(z, w) and g(z, w) are analytic in a neighborhood of o(ax, a2),

then

(/+ gHfiu «2) =f(ax, a2) + g(ax, a2)

and

(fg)(<>i> a2) =f(ax, a2)g(ax, a2).

(c) Iff(z) is analytic in a neighborhood U of o(ax) and iffx(z, w) is the

extension of f(z) to Uxtf defined by fx(z,w)—f(z), then fx(ax, a2)=f(ax)

where f(ax) is an analytic function of the element ax in the sense of the

Riesz-Dunfordfunctional calculus (Dunford and Schwartz [2, p. 566]).

Proof of Theorem 1. For A e H8(.^C), let LA and RA be the operators

on J'pH defined by LA(X)=AX and RA(X)=XA. It is not difficult to
show that o(LA) = a(RA) = o(A). Therefore if/(z) is analytic on a neigh-

borhood of a(A), then both f(LA) and f(RA) are defined by the usual

Riesz-Dunford functional calculus. Furthermore, it is known [5, p. 33]

that f(LA)=Lf(A) and f(RA)=RflA). Let sé be the maximal abelian sub-

algebra of .^(á?(Jf)) containing LA, RA, and the identity. Then the spec-

trum of LA (and RA) with respect to the algebra sé is equal to the spectrum

of LA (and RA) with respect to the algebra äS(äS(.^y) which is o(A).

(See [7, p. 34].) We will apply Lemma 1 to the commutative algebra sé.

If g(z, w)=(f(z)—f(w))/(z—w), then it can easily be shown thatg(z, w) is

analytic on a neighborhood of o(LA, RA). Let h(z, w)=(z — w)g(z, w).

Then by Lemma 1 part (b) there exists an operator h(LA, RA) in sé such

that h(LA, R,)=f(LA)-f(RA) and by parts (a) and (h) h(LA, R t) =

(L,-RA)g(LA, RA).Thereforef(LA)-f(RA) = (LA-RA)g(LA, RA). Hence

V„ = LHA) - RnA) =f(LA) -f(RA) = AAg(LA, RA)

and therefore .^(A/(A))<^0t(A ,).

Corollary 1. Let A^O be an element of âS(Jt) with 0$o(A).

Then .<%(AA1/1)=¿í?(AA).

Proof. Since the function /(z)=z,/2 is analytic on the right half

plane, ¿#(AAir.)<=è!?(A4). The reverse inclusion follows from the fact

that A = (A1'2)2.

2. Stampfli [8] has shown that the range of a derivation does not

contain any nonzero two-sided ideals. We will see that the range of a

derivation generated by a nonunitary isometry does contain nonzero

left ideals.
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Remark.    If U is a pure isometry and 3>=3$(U)L, then it can be shown

that all operators of the form

~A0 0 0 0

A1 0 0 0

A2   0   0   0

on ^=9®U(Sè)®V2(2)®- ■ ■ are in M(AV). (See Pearcy [6] or

Halmos [4].) It is an immediate consequence that @t{3t){\ — l/í/*)c

^(Ayy). This result can be extended to all isometries.

Theorem 2.    ¿e/   U be  an  isometry  on  <W.   If P—X — UIJ*,

3S(3HT)P<=. @(AV).
then

Proof. Let U=V®W on Jt" = M\®.%\ where V is a pure isometry,

Wis a unitary, and ,Wi is an infinite dimensional Hilbert space for i=l, 2.

Given X e <%(#) where

jr =
A Q       X*

choose   F^.^iJf,) such that Xl(l-VV*)=VY1-YlV (the existence

of which is guaranteed by the above remark). If we let

Fi 0"
F =

W*X3(l - VV*)    0

then a computation shows that X(\ — UU*)=AU( Y).

Remarks. (1) A more algebraic proof can be obtained by seeing

that for Yeá(M), the operator X=J_^<sVkPYPl]*k+1 is bounded

and that AV(U* YP-X)= YP.

(2) Let U=V(t)Won Jf«^,©^, where Fand IF are both required

only to be isometries. For F=(F<) 6 3S(M)

AV(Y) =

anàîox X=(Xf)e 3S(M)

X(\ - UU*) =

VYX

WY3

YXV VY2 - Y2W

Y,V    WY, - YXW

XA4 - VV*)    X2(l

X3(\ - VV*)    X¿\

WW*)

WW*)
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Since U is an isometry, 3i(Jf)(\-UlJ*)^0t(Av) by Theorem 2. By

considering the (2, 1) positions in the above matrices, it follows that given

any bounded operator X: Jfj—>-Jf2, there exists a bounded operator

Y:Jfr-*-Jft such that X(\-VV*)=WY-YV. In particular, if V and

W are isometries on 3t\ and Wx is a unitary from Jf, onto Jf 2» tnen

V®WXWWX is an isometry on ,^=^©^2. Therefore, for each

Xeâa(3t°x) there exists a yeJ(/,) such that WXX(\-VV*) =

WxWWt(Wx Y)-(WX Y)V. Therefore X(\ - VV*)= WY- YV.

Corollary. // V and W are isometries on Jf, then &(Ji?)(l — VV*)

is contained in the range of the intertwining operator T(X)= WX—XV.

Remarks. (1) By the use of Theorem 2 we can show that 3&(AV)

contains other left ideals, in fact @(Jf)(\ -Uküt)'^^(Aü) for UA =

(U — X)(\—XU)'1. To obtain an operator such that its derivation range

contains right ideals, we need only consider the adjoint of a nonunitary

isometry.

(2) The right ideal generated by 1 — VU* is not contained in 0t(Av).

(See [9].)

3. It was observed by Halmos [4] that every operator on an infinite

dimensional Hilbert space is the sum of two commutators. This result

can be strengthened.

Theorem 3. Let U and V be isometries on an infinite dimensional

Hilbert space. If ®(U)®i%(V) = ,W, then á?(Af7)+^,(Ar)=^,(Jf).

Proof. Let Px=l-UU* and P2=\-VV*. Then for Xe,<%(<%),

X=XPX+XP2. Hence X g ^(Av) + R(Ar) by Theorem 2.

Remark. Although Stampfli [8] has shown that â#(AA) cannot be

dense in ^(Jf), Theorem 3 shows that 0t(Av)+0l(Av) is dense if U and

V are the isometries U:Jf-+J¿ and F:.3f->^#J- associated with any in-

finite dimensional subspace <4( of infinite deficiency.
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