ANALYTIC FUNCTIONS, IDEALS, AND DERIVATION RANGES¹

R. E. WEBER

ABSTRACT. When A is in the Banach algebra $\mathscr{M}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H} , the derivation generated by A is the bounded operator Δ_A on $\mathscr{M}(\mathscr{H})$ defined by $\Delta_A(X) = AX - XA$. It is shown that (i) if B is an analytic function of A, then the range of Δ_B is contained in the range of Δ_A ; (ii) if U is a nonunitary isometry, then the range of Δ_C contains nonzero left ideals; (iii) if U and V are isometries with orthogonally complemented ranges, then the span of the ranges of the corresponding derivations is all of $\mathscr{M}(\mathscr{H})$.

1. It follows from the elementary properties of derivations that the set of all B such that $\mathcal{M}(\Delta_B) \subseteq \mathcal{M}(\Delta_A)$ is a subalgebra of $\mathcal{M}(\mathcal{H})$. (See [9, p. 4].) Therefore if B is a polynomial in A, then $\mathcal{M}(\Delta_B) \subseteq \mathcal{M}(\Delta_A)$. We will generalize this to analytic functions. In the following, \mathcal{H} denotes a separable complex Hilbert space.

THEOREM 1. Let $A \in \mathcal{B}(\mathcal{H})$ and let f(z) be a function analytic on an open set containing $\sigma(A)$. If B = f(A), then $\mathcal{R}(\Delta_R) \subseteq \mathcal{R}(\Delta_A)$.

For the proof we need the following result on analytic functions of commuting operators.

Let \mathscr{A} be a commutative Banach algebra with maximal ideal space $\mathscr{M}_{\mathscr{A}}$ and let a_1 and a_2 belong to \mathscr{A} . The joint spectrum of a_1 and a_2 is the set $\{(\varphi(a_1), \varphi(a_2)): \varphi \in \mathscr{M}_{\mathscr{A}}\}$ and is denoted by $\sigma(a_1, a_2)$. (See Gamelin [3, p. 76] for a discussion of the joint spectrum and the proof of the following lemma.)

LEMMA 1. There exists a unique rule assigning to every ordered pair (a_1, a_2) of elements in $\mathcal A$ and to every complex valued function of two complex variables f(z, w) analytic in a neighborhood of $\sigma(a_1, a_2)$, an element

Received by the editors October 16, 1972 and, in revised form, January 10, 1973. AMS (MOS) subject classifications (1970). Primary 47B47; Secondary 47A50.

Key words and phrases. Derivation ranges, left ideals, analytic functions, orthogonally complemented ranges.

¹ This paper contains part of a doctoral dissertation written under the direction of Professor James Williams at Indiana University.

⁽c) American Mathematical Society 1973

 $f(a_1, a_2) \in \mathcal{A}$ satisfying the following conditions:

- (a) If $f(z, w) = \sum_{i=1}^{\infty} c_i d_j z^i w^j$ is a polynomial, then $f(a_1, a_2) = \sum_{i=1}^{\infty} c_i d_j a_1^i a_2^i$.
- (b) If f(z, w) and g(z, w) are analytic in a neighborhood of $\sigma(a_1, a_2)$, then

$$(f+g)(a_1, a_2) = f(a_1, a_2) + g(a_1, a_2)$$

and

$$(fg)(a_1, a_2) = f(a_1, a_2)g(a_1, a_2).$$

(c) If f(z) is analytic in a neighborhood U of $\sigma(a_1)$ and if $f_1(z, w)$ is the extension of f(z) to $U \times \mathscr{C}$ defined by $f_1(z, w) = f(z)$, then $f_1(a_1, a_2) = f(a_1)$ where $f(a_1)$ is an analytic function of the element a_1 in the sense of the Riesz-Dunford functional calculus (Dunford and Schwartz [2, p. 566]).

PROOF OF THEOREM 1. For $A \in \mathcal{B}(\mathcal{H})$, let L_A and R_A be the operators on $\mathcal{B}(\mathcal{H})$ defined by $L_A(X) = AX$ and $R_A(X) = XA$. It is not difficult to show that $\sigma(L_A) = \sigma(R_A) = \sigma(A)$. Therefore if f(z) is analytic on a neighborhood of $\sigma(A)$, then both $f(L_A)$ and $f(R_A)$ are defined by the usual Riesz-Dunford functional calculus. Furthermore, it is known [5, p. 33] that $f(L_A) = L_{f(A)}$ and $f(R_A) = R_{f(A)}$. Let \mathscr{A} be the maximal abelian subalgebra of $\mathscr{B}(\mathcal{B}(\mathcal{H}))$ containing L_A , R_A , and the identity. Then the spectrum of L_A (and R_A) with respect to the algebra \mathscr{A} is equal to the spectrum of L_A (and R_A) with respect to the algebra $\mathscr{B}(\mathscr{B}(\mathcal{H}))$ which is $\sigma(A)$. (See [7, p. 34].) We will apply Lemma 1 to the commutative algebra \mathscr{A} . If g(z,w)=(f(z)-f(w))/(z-w), then it can easily be shown that g(z,w) is analytic on a neighborhood of $\sigma(L_A,R_A)$. Let h(z,w)=(z-w)g(z,w). Then by Lemma 1 part (b) there exists an operator $h(L_A,R_A)$ in \mathscr{A} such that $h(L_A,R_A)=f(L_A)-f(R_A)$ and by parts (a) and (b) $h(L_A,R_A)$. Hence $(L_A-R_A)g(L_A,R_A)$. Therefore $f(L_A)-f(R_A)=(L_A-R_A)g(L_A,R_A)$. Hence

$$\Delta_{f(A)} = L_{f(A)} - R_{f(A)} = f(L_A) - f(R_A) = \Delta_A g(L_A, R_A)$$

and therefore $\mathcal{R}(\Delta_{f(A)}) \subset \mathcal{R}(\Delta_A)$.

COROLLARY 1. Let $A \ge 0$ be an element of $\mathcal{B}(\mathcal{H})$ with $0 \notin \sigma(A)$. Then $\mathcal{R}(\Delta_{A^{1/2}}) = \mathcal{R}(\Delta_A)$.

PROOF. Since the function $f(z)=z^{1/2}$ is analytic on the right half plane, $\mathcal{R}(\Delta_{A^{1/2}}) \subset \mathcal{R}(\Delta_A)$. The reverse inclusion follows from the fact that $A=(A^{1/2})^2$.

2. Stampfli [8] has shown that the range of a derivation does not contain any nonzero two-sided ideals. We will see that the range of a derivation generated by a nonunitary isometry does contain nonzero left ideals.

REMARK. If U is a pure isometry and $\mathscr{D} = \mathscr{R}(U)^{\perp}$, then it can be shown that all operators of the form

on $\mathscr{H} = \mathscr{D} \oplus U(\mathscr{D}) \oplus U^2(\mathscr{D}) \oplus \cdots$ are in $\mathscr{R}(\Delta_U)$. (See Pearcy [6] or Halmos [4].) It is an immediate consequence that $\mathscr{R}(\mathscr{H})(1-UU^*) \subset \mathscr{R}(\Delta_U)$. This result can be extended to all isometries.

Theorem 2. Let U be an isometry on \mathcal{H} . If $P=1-UU^*$, then $\mathcal{B}(\mathcal{H})P \subset \mathcal{R}(\Delta_U)$.

PROOF. Let $U = V \oplus W$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where V is a pure isometry, W is a unitary, and \mathcal{H}_i is an infinite dimensional Hilbert space for i = 1, 2. Given $X \in \mathcal{B}(\mathcal{H})$ where

$$X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}$$

choose $Y_1 \in \mathcal{B}(\mathcal{H}_1)$ such that $X_1(1-VV^*)=VY_1-Y_1V$ (the existence of which is guaranteed by the above remark). If we let

$$Y = \begin{bmatrix} Y_1 & 0 \\ W^*X_2(1 - VV^*) & 0 \end{bmatrix}$$

then a computation shows that $X(1-UU^*)=\Delta_U(Y)$.

REMARKS. (1) A more algebraic proof can be obtained by seeing that for $Y \in \mathcal{B}(\mathcal{H})$, the operator $X = \sum_{k=0}^{\infty} U^k P Y P U^{*k+1}$ is bounded and that $\Delta_{IJ}(U^*YP - X) = YP$.

(2) Let $U = V \oplus W$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where V and W are both required only to be isometries. For $Y = (Y_i) \in \mathcal{B}(\mathcal{H})$

$$\Delta_{U}(Y) = \begin{bmatrix} VY_{1} - Y_{1}V & VY_{2} - Y_{2}W \\ WY_{3} - Y_{3}V & WY_{4} - Y_{4}W \end{bmatrix}$$

and for $X=(X_i)\in \mathcal{B}(\mathcal{H})$

$$X(1 - UU^*) = \begin{bmatrix} X_1(1 - VV^*) & X_2(1 - WW^*) \\ X_3(1 - VV^*) & X_4(1 - WW^*) \end{bmatrix}.$$

Since U is an isometry, $\mathscr{B}(\mathscr{H})(1-UU^*) \subset \mathscr{R}(\Delta_U)$ by Theorem 2. By considering the (2,1) positions in the above matrices, it follows that given any bounded operator $X:\mathscr{H}_1 \to \mathscr{H}_2$, there exists a bounded operator $Y:\mathscr{H}_1 \to \mathscr{H}_2$ such that $X(1-VV^*) = WY-YV$. In particular, if V and W are isometries on \mathscr{H}_1 and W_1 is a unitary from \mathscr{H}_1 onto \mathscr{H}_2 , then $V \oplus W_1 W W_1^*$ is an isometry on $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$. Therefore, for each $X \in \mathscr{B}(\mathscr{H}_1)$ there exists a $Y \in \mathscr{B}(\mathscr{H}_1)$ such that $W_1 X(1-VV^*) = W_1 W W_1^*(W_1 Y) - (W_1 Y)V$. Therefore $X(1-VV^*) = WY - YV$.

COROLLARY. If V and W are isometries on \mathcal{H} , then $\mathcal{B}(\mathcal{H})(1-VV^*)$ is contained in the range of the intertwining operator T(X)=WX-XV.

REMARKS. (1) By the use of Theorem 2 we can show that $\mathscr{R}(\Delta_U)$ contains other left ideals, in fact $\mathscr{R}(\mathscr{H})(1-U_{\lambda}U_{\lambda}^*)\subset \mathscr{R}(\Delta_U)$ for $U_{\lambda}=(U-\lambda)(1-\bar{\lambda}U)^{-1}$. To obtain an operator such that its derivation range contains right ideals, we need only consider the adjoint of a nonunitary isometry.

- (2) The right ideal generated by $1-UU^*$ is not contained in $\mathscr{R}(\Delta_U)$. (See [9].)
- 3. It was observed by Halmos [4] that every operator on an infinite dimensional Hilbert space is the sum of two commutators. This result can be strengthened.
- THEOREM 3. Let U and V be isometries on an infinite dimensional Hilbert space. If $\mathcal{R}(U) \oplus \mathcal{R}(V) = \mathcal{H}$, then $\mathcal{R}(\Delta_U) + \mathcal{R}(\Delta_V) = \mathcal{B}(\mathcal{H})$.

PROOF. Let $P_1=1-UU^*$ and $P_2=1-VV^*$. Then for $X\in \mathcal{B}(\mathcal{H})$, $X=XP_1+XP_2$. Hence $X\in \mathcal{R}(\Delta_U)+R(\Delta_V)$ by Theorem 2.

REMARK. Although Stampfli [8] has shown that $\mathcal{R}(\Delta_A)$ cannot be dense in $\mathcal{B}(\mathcal{H})$, Theorem 3 shows that $\mathcal{R}(\Delta_U) + \mathcal{R}(\Delta_V)$ is dense if U and V are the isometries $U: \mathcal{H} \to \mathcal{M}$ and $V: \mathcal{H} \to \mathcal{M}^{\perp}$ associated with any infinite dimensional subspace \mathcal{M} of infinite deficiency.

REFERENCES

- 1. J. H. Anderson, *Derivations, commutators, and the essential numerical range*, Thesis, Indiana University, Bloomington, Ind., 1971.
- 2. N. Dunford and J. T. Schwartz, *Linear operators*. I, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
 - 3. F. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- **4.** P. R. Halmos, *Commutators of operators*. II, Amer. J. Math. **76** (1954), 191–198. MR **15**, 538.
- 5. G. Lumer and M. Rosenblum, *Linear operator equations*, Proc. Amer. Math. Soc. 10 (1959), 32-41. MR 21 #2927.

496 R. E. WEBER

- 6. C. Pearcy, On commutators of operators on Hilbert space, Proc. Amer. Math. Soc. 16 (1965), 53-59. MR 30 #452.
- 7. C. E. Rickart, General theory of Banach algebras, University series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.
 - 8. J. G. Stampfli, On the range of a derivation (to appear).
- 9. R. E. Weber, *Derivation ranges*, Thesis, Indiana University, Bloomington, Ind., 1972.

Department of Mathematics, Indiana University Southeast, Warder Park, Jeffersonville, Indiana 47130

Current address: Department of Mathematics, Indiana University Southeast, New Albany, Indiana 47150