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METRIC INEQUALITIES AND THE ZONOID PROBLEM

H.   S.   WITSENHAUSEN

Abstract. For normed spaces the hypermetric and quasihyper-

metric properties are equivalent and imply the quadrilateral prop-

erty. The unit ball of a Minkowski space is a zonoid if and only if

the dual space is hypermetric. The unit ball of /£ is not a zonoid

for ;; = 3, /><Iog 3/log 2, and for p^2-(2n log 2)->+o(/j-1). The

elliptic spaces f>'', d>], are not quasihypermetric.

A metric space (S, d) is said to be hypermetric (Kelly [3]) when

n

(i) 2 wiwAxi> xi) ú o
¡.¿=i

for all «>0, .v,, • • • , x„ in S, and tv,, • • • , w„ integers with sum 1. This

implies [5] that (1) also holds for real wt of sum 0, which is called the

quasihypermetric property.

A piecewise linear inequality (PLI) is a relation of the form

(2) 2 c* 2 a*ix¡> 0

which holds for all «-tuples xx, • • • , xn of real numbers, with fixed real

ct and au. An example is the quadrilateral inequality [8]

(3)   |x| + 1/1 + \z\ - \x + y\ - \y + z\ - \z + x\ + \x + y + z\ ^ 0.

Since the real line is hypermetric [4], (1) generates an infinite family of

PLI's of the form

¿ (-wiWj) \Xi - xj\ ^ 0
¡.;=l

for if, integers of sum I and for irf reals of sum 0.

The PLI (2) is said to extend to the normed space N if it holds with the

absolute value function replaced by the norm and xx, ■ ■ ■ , .v„ arbitrary

elements of A'.
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A zonoid [1], [2] is a convex body belonging to the closure (in the

Hausdorff set metric) of the class of zonotopes (polytopes which are

Minkowski sums of segments).

The theorems of I. J. Schoenberg [7] and P. Levy [6] imply that the

above concepts are related.

Proposition 1. For a real normed space N the following 3 properties are

equivalent.

(i) every PLI extends to N,

(ii) N is quasihypermetric,

(iii) e~^ is positive definite on N.

Proof. If every PLI extends to N then in particular N is quasihyper-

metric. Following an argument of Schoenberg, consider n+l points

x0, ■ ■ ■ , xn in N with weights — 2T=i H'<> M'i. ' * " » wn where the wt are

arbitrary reals. This yields

n

2 WiWÂ\\xi - x0\\ + \\xj - xj - \\xt - xj) ^ 0,
I. J=l

that is, the parenthesis is positive definite. Then its exponential is positive

definite and, absorbing enXi~x"]] into w(, e-11*11 is shown to be positive

definite. Conversely, if e-"*11 is positive definite on N it is positive definite

on every finite dimensional subspace oí N. By Levy's theorem [6], [1] these

subspaces are isometrically isomorphic to subspaces of Z,j(0, 1) to which

any PLI extends by integration. Since each PLI involves only finite systems

of vectors, it extends to all of N.

In [4] Kelly raised the question of the possible relations between the

hypermetric and quadrilateral properties in normed spaces. Applying

Proposition 1 one has

Corollary 1.1. For real normed spaces, the hypermetric and quasihyper-

metric properties are equivalent and they imply the quadrilateral property.

For 1 -^p-^2, eH|a:11 is known [7] to be positive definite on Z,„(0,1), hence

Corollary 1.2. Lp(0, 1) (and a fortiori /£) is hypermetric and quadri-

lateral for l^/>5=2.

This had been conjectured by Kelly [4] and the Smileys [8]. For finite

dimensional real normed spaces (Minkowski spaces) the positive definite-

ness of e-11*11 is equivalent [1] to the property that the unit ball of the dual

space is a zonoid. Thus one has

Corollary 1.3. The unit ball of a Minkowski space is a zonoid if and

and only if the dual space is hypermetric.
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Thus the known fact that all Minkowski planes are hypermetric [4]

follows from the elementary fact that all centrally symmetric convex

polygons are sums of segments.

For «2^3, letpn be the smallest/; such that the unit ball of lnv is a zonoid.

One has p3^pn^p„ui^2, Bolker [1], [2] has conjectured that p3=2.

He reports the following bounds of Rosenthal: p3>\og 9/log 7 and pn>

2 log «/log 3«, hence pn^.2 — log 9/log « + o((log ny1).1 These bounds

can be substantially improved.

Proposition 2.    One hasp3~^.\og 3/log2 and p „^.2 —1/2« log 2 + o(«_1).

Proof. For «=3, /><log3/log2 the quadrilateral inequality in the

dual space is violated for x=(l, 1, — \),y=(l, —1, 1), z=(—1, 1, 1), as

observed by the Smileys [8].2 For large even n = 2m, consider the quasi-

hypermetric inequality in the dual l2m, with wt= 1 at the 2m points with the

first m coordinates equal to ±1 and the last m coordinates 0, w¡= — 1 at

the 2m points with first m coordinates 0 and the last m equal to ±1. All

distances between the two sets are (2«i)1/* while distances within each set

are of the form 2kxl" with OrirC^w. Counting the number of occurrences

of each distance, a violation of the inequality is seen to require

2/2™". J (m\(2P'<)\ > 22m(2m)xlQ

or 2E{kll")X2mylq with k binomially distributed. For large m, expand

k1/q about the mean k = m\2 and let \¡q=\ + e. Then the violation occurs

for e< — (16/w log 2)~1 + o(«!~1), so that pr>.2— (2« log 2) 1+o(n~1) as

claimed.

Kelly [3] has shown that spherical spaces are hypermetric. This no longer

holds when antipodes are identified.

Proposition 3.    The elliptic plane S2 is not quasihypermetric.

Proof. Assume the opposite, and consider the function, defined for

p in C(ê2)*, by F(p) = $ p(dx) f p(dy)xy, where xy is the elliptic distance

and the integrals range over the compact space S2. By (1) the function is

nonpositive, hence concave on the subspace {p\ / p(dx)=0}. The concavity

holds as well on the parallel subspace {p\§p(dx)=l} and in particular on

the set 01 of probability measures on S2. For p in 0> and t in the compact

group G of isometries oft?2, let p* be the mixture of the displaced measures

p o t under normalized Haar measure on G. Then p* is the uniform'

1 Thus Z.„(0, 1) is not hypermetric for p>2.

2 Alternatively, the hypermetric inequality is violated for the choice of »¡ = 1  at

(±1, ±1,0) and «•,= -! at (0, 0, 0), (0, 0, ±1).
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distribution on S2 and by concavity F(p*)^.F(p). However, the distri-

bution ¡i assigning equal probabilities to the vertices of an equilateral

triangle of side length D, the diameter of S2, yields F(p)=2Dß while

F(p*) = 2D¡tT, a contradiction.

That S2 is not hypermetric already follows from the violation of the

hypermetric inequality that occurs for the choice of w¡= — 1 at 3 mutually

orthogonal lines and ^= + 1 at their 4 trisectors.

Since ê2^êA for d>2 one has

Corollary 3.1.    For d> 1 the elliptic space Sd is not quasihypermetric.
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