METRIC INEQUALITIES AND THE ZONOID PROBLEM

H. S. WITSENHAUSEN

ABSTRACT. For normed spaces the hypermetric and quasihypermetric properties are equivalent and imply the quadrilateral property. The unit ball of a Minkowski space is a zonoid if and only if the dual space is hypermetric. The unit ball of l_n^n is not a zonoid for n=3, $p<\log 3/\log 2$, and for $p\le 2-(2n\log 2)^{-1}+o(n^{-1})$. The elliptic spaces \mathcal{E}^d , d>1, are not quasihypermetric.

A metric space (S, d) is said to be hypermetric (Kelly [3]) when

$$(1) \qquad \sum_{i,j=1}^{n} w_i w_j d(x_i, x_j) \leq 0$$

for all n>0, x_1, \dots, x_n in S, and w_1, \dots, w_n integers with sum 1. This implies [5] that (1) also holds for real w_i of sum 0, which is called the *quasihypermetric* property.

A piecewise linear inequality (PLI) is a relation of the form

$$(2) \qquad \qquad \sum_{i=1}^k c_i \left| \sum_{j=1}^n a_{ij} x_j \right| \ge 0$$

which holds for all *n*-tuples x_1, \dots, x_n of real numbers, with fixed real c_i and a_{ij} . An example is the *quadrilateral* inequality [8]

(3)
$$|x| + |y| + |z| - |x + y| - |y + z| - |z + x| + |x + y + z| \ge 0$$
.

Since the real line is hypermetric [4], (1) generates an infinite family of PLI's of the form

$$\sum_{i,j=1}^{n} (-w_i w_j) |x_i - x_j| \ge 0$$

for w_i integers of sum 1 and for w_i reals of sum 0.

The PLI (2) is said to extend to the normed space N if it holds with the absolute value function replaced by the norm and x_1, \dots, x_n arbitrary elements of N.

Received by the editors November 13, 1972 and, in revised form, January 23, 1973. AMS (MOS) subject classifications (1970). Primary 42A40; Secondary 50C10, 52A20. Key words and phrases. Metric inequalities, zonoids, hypermetric spaces, elliptic geometry.

A zonoid [1], [2] is a convex body belonging to the closure (in the Hausdorff set metric) of the class of zonotopes (polytopes which are Minkowski sums of segments).

The theorems of I. J. Schoenberg [7] and P. Lévy [6] imply that the above concepts are related.

PROPOSITION 1. For a real normed space N the following 3 properties are equivalent.

- (i) every PLI extends to N,
- (ii) N is quasihypermetric,
- (iii) $e^{-||x||}$ is positive definite on N.

PROOF. If every PLI extends to N then in particular N is quasihypermetric. Following an argument of Schoenberg, consider n+1 points x_0, \dots, x_n in N with weights $-\sum_{i=1}^n w_i, w_1, \dots, w_n$ where the w_i are arbitrary reals. This yields

$$\sum_{i,j=1}^{n} w_i w_j (\|x_i - x_0\| + \|x_j - x_0\| - \|x_i - x_j\|) \ge 0,$$

that is, the parenthesis is positive definite. Then its exponential is positive definite and, absorbing $e^{\|x_i-x_0\|}$ into w_i , $e^{-\|x\|}$ is shown to be positive definite. Conversely, if $e^{-\|x\|}$ is positive definite on N it is positive definite on every finite dimensional subspace of N. By Lévy's theorem [6], [1] these subspaces are isometrically isomorphic to subspaces of $L_1(0, 1)$ to which any PLI extends by integration. Since each PLI involves only finite systems of vectors, it extends to all of N.

In [4] Kelly raised the question of the possible relations between the hypermetric and quadrilateral properties in normed spaces. Applying Proposition 1 one has

COROLLARY 1.1. For real normed spaces, the hypermetric and quasihypermetric properties are equivalent and they imply the quadrilateral property.

For $1 \le p \le 2$, $e^{-\|x\|}$ is known [7] to be positive definite on $L_n(0, 1)$, hence

COROLLARY 1.2. $L_p(0, 1)$ (and a fortiori l_p^n) is hypermetric and quadrilateral for $1 \le p \le 2$.

This had been conjectured by Kelly [4] and the Smileys [8]. For finite dimensional real normed spaces (Minkowski spaces) the positive definiteness of $e^{-\|x\|}$ is equivalent [1] to the property that the unit ball of the dual space is a zonoid. Thus one has

COROLLARY 1.3. The unit ball of a Minkowski space is a zonoid if and and only if the dual space is hypermetric.

Thus the known fact that all Minkowski planes are hypermetric [4] follows from the elementary fact that all centrally symmetric convex polygons are sums of segments.

For $n \ge 3$, let p_n be the smallest p such that the unit ball of l_p^n is a zonoid. One has $p_3 \le p_n \le p_{n+1} \le 2$, Bolker [1], [2] has conjectured that $p_3 = 2$. He reports the following bounds of Rosenthal: $p_3 > \log 9/\log 7$ and $p_n > 2 \log n/\log 3n$, hence $p_n \ge 2 - \log 9/\log n + o((\log n)^{-1})$. These bounds can be substantially improved.

PROPOSITION 2. One has $p_3 \ge \log 3/\log 2$ and $p_n \ge 2 - 1/2n \log 2 + o(n^{-1})$.

PROOF. For n=3, $p<\log 3/\log 2$ the quadrilateral inequality in the dual space is violated for x=(1,1,-1), y=(1,-1,1), z=(-1,1,1), as observed by the Smileys [8].² For large even n=2m, consider the quasi-hypermetric inequality in the dual l_i^{2m} , with $w_i=1$ at the 2^m points with the first m coordinates equal to ± 1 and the last m coordinates 0, $w_i=-1$ at the 2^m points with first m coordinates 0 and the last m equal to ± 1 . All distances between the two sets are $(2m)^{1/q}$ while distances within each set are of the form $2k^{1/q}$ with $0 \le k \le m$. Counting the number of occurrences of each distance, a violation of the inequality is seen to require

$$2\left(2^{m-1}\sum_{k=0}^{m} \binom{m}{k} (2k^{1/q})\right) > 2^{2m} (2m)^{1/q}$$

or $2E\{k^{1/q}\} > (2m)^{1/q}$ with k binomially distributed. For large m, expand $k^{1/q}$ about the mean k=m/2 and let $1/q=\frac{1}{2}+\varepsilon$. Then the violation occurs for $\varepsilon < -(16m \log 2)^{-1} + o(m^{-1})$, so that $p_n \ge 2 - (2n \log 2)^{-1} + o(n^{-1})$ as claimed.

Kelly [3] has shown that spherical spaces are hypermetric. This no longer holds when antipodes are identified.

PROPOSITION 3. The elliptic plane \mathcal{E}^2 is not quasihypermetric.

PROOF. Assume the opposite, and consider the function, defined for μ in $C(\mathscr{E}^2)^*$, by $F(\mu) = \int \mu(dx) \int \mu(dy) \overline{xy}$, where \overline{xy} is the elliptic distance and the integrals range over the compact space \mathscr{E}^2 . By (1) the function is nonpositive, hence concave on the subspace $\{\mu | \int \mu(dx) = 0\}$. The concavity holds as well on the parallel subspace $\{\mu | \int \mu(dx) = 1\}$ and in particular on the set \mathscr{P} of probability measures on \mathscr{E}^2 . For μ in \mathscr{P} and τ in the compact group G of isometries of \mathscr{E}^2 , let μ^* be the mixture of the displaced measures $\mu \circ \tau$ under normalized Haar measure on G. Then μ^* is the uniform

¹ Thus $L_p(0, 1)$ is not hypermetric for p > 2.

² Alternatively, the hypermetric inequality is violated for the choice of $w_i = 1$ at $(\pm 1, \pm 1, 0)$ and $w_i = -1$ at (0, 0, 0), $(0, 0, \pm 1)$.

distribution on \mathscr{E}^2 and by concavity $F(\mu^*) \geq F(\mu)$. However, the distribution μ assigning equal probabilities to the vertices of an equilateral triangle of side length D, the diameter of \mathscr{E}^2 , yields $F(\mu) = 2D/3$ while $F(\mu^*) = 2D/\pi$, a contradiction.

That \mathscr{E}^2 is not hypermetric already follows from the violation of the hypermetric inequality that occurs for the choice of $w_i = -1$ at 3 mutually orthogonal lines and $w_i = +1$ at their 4 trisectors.

Since $\mathscr{E}^2 \subset \mathscr{E}^d$ for d > 2 one has

COROLLARY 3.1. For d>1 the elliptic space \mathcal{E}^a is not quasihypermetric.

REFERENCES

- 1. E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345. MR 41 #921.
 - 2. ——, The zonoid problem, Amer. Math. Monthly 78 (1971), 529-531.
- 3. J. B. Kelly, *Combinatorial inequalities*, Combinatorial Structures and Their Applications, Gordon and Breach, New York, 1970, pp. 201–207.
- 4. ——, Metric inequalities and symmetric differences, Inequalities—II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), Academic Press, New York, 1970, pp. 193-212. MR 41 #9192.
- 5. ——, Hypermetric spaces and metric transforms, Inequalities—III, Academic Press, New York, 1972, pp. 149–158.
 - 6. P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
- 7. I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522-536.
- 8. D. M. Smiley and M. F. Smiley, *The polygonal inequalities*, Amer. Math. Monthly 71 (1964), 755-760. MR 30 #1384.

BELL TELEPHONE LABORATORIES, INC., MURRAY HILL, NEW JERSEY 07974