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LOCALIZATION AT INJECTIVES IN COMPLETE
CATEGORIES

J. LAMBEK AND B. A. RATTRAY

ABSTRACT. We consider a complete category /. For cach
object I of &/ we define a functor Q:%/— ./ and obtain a necessary
and sufficient condition on I for Q, after restricting its codomain, to
become a reflector of </ onto the limit closure of I. In particular,
this condition is satisfied if / is injective in ./ with regard to
equalizers. Among the special cases of such reflectors are: the
reflector onto torsion-free divisible objects associated to an injective
Iin Mod R; the Samuel compactification of a uniform space; the
Stone-Cech compactification.

We give a second description of Q in terms of a triple on sets.
If Iis injective and the functor Q is equivalent to the identity then,
under a few extra conditions on &/, &/°? is triplable over sets with
regard to the functor taking 4 to ./(4, I).

We recall some notation and definitions. We write 2/(A4, B) or just
(4, B) for the set of all maps from A4 to B in &7. & denotes the category
of sets. The /imit closure of an object I of o7 is the smallest full replete
subcategory of 7 closed under limits and containing I. I is injective with
regard to the map f:A—B if &Z(f,I): (B, I)—~s4(4, I) is a surjection.
We call [ injective in o7 if it is injective with regard to all regular mono-
morphisms in &/. A regular monomorphism is a map which happens to
be an equalizer.

The object I determines functors

(- 1
A ——> S —>

where (—, I) is a left adjoint of 7=, in view of the natural isomorphism
LA (A, D, X) = L(X, L4, D) = (A4, 17).

Thus the composition S=1¢"") is part of a triple (standard construction)
(S, n, u) on 7 (see [9]). For future reference we describe 7(A4): A—S(A)
and also S(f) for any map f: 4—B.
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Let u* denote the map A—I~ corresponding to u:X—(4, I), defined
by the formula V, ymu*=u(x), where =, is the canonical projection
I*—I. Then n(4)=1%4 ), that is,

™ Voeta.nmm(A) = g.
The map S(f)=I1""D:14D[EBD js given thus
*" Vieta.5)Vres. n™S(f) = myy.

Following Fakir [2], we define the functor Q:/—./ as the equalizer

N
Q00— S—= 8§52
Sn
Fakir showed that Q is part of a triple (Q, #,, u,) and that, if S(x(A4)) is
mono for each object A4, then Q is idempotent.

Let Fix QO be the full subcategory of & consisting of all those objects
A for which #,(4):A—Q(A) is an isomorphism. Since Q(A4) is only
defined up to isomorphism, we can assume that each such #,(4) is the
identity map of 4. Then Q is idempotent if and only if, by restriction of the
codomain to the image, it induces a reflector «/— Fix Q. The reflection
map from A into Fix Q is then #,(A4): A—Q(A4), which is defined by the
condition «(A4)n,(4)=n(A4).

Before stating our main result, we require two lemmas.

LemMa 1. k(A):Q(A)—S(A) is the joint equalizer of all pairs of maps
S(A) 21 which coequalize n(A): A—S(A).

Proor. Consider any map u:S(4)—I. Then, by (*), wunS(;I):u,
and by (**), 7,Sn(4)=m,,4). Thus «(A) equalizes all pairs of maps
(U, Tynay)- Now let v:S(A)—I be such that un(A)=vn(A4). Then «(A4)
equalizes (u, v), since

uK(A) = ﬂur)(A)K(A) = my(A)K(A) = UK(A).

Conversely, any map which equalizes all (u, v) such that un(A4)=v7(4)
equalizes (u, 7,,4)) in particular, since ., n(A4)=un(A4) by (*). Hence
it equalizes #S(A4) and S7n(A).

Lemma 2. 7€ Fix Q.

ProOF. By (*), m n(I)=1;, hence n(J) is the equalizer of the pair of
maps (17(1)71-1 s Lsn)- Thus n(I) is the joint equalizer of all pairs of maps
et ’—’I‘ n Wthh coequalize 7(/), and therefore the ]omt equalizer of
all pairs of maps "D =T which coequalize #7(I). In view of Lemma 1,
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«(J) is this same equalizer. Hence the unique map #,(I):/—Q(J) such that
k(D)n(I)=mn(I) is an isomorphism, and so [ is in Fix Q.

THEOREM. The following statements are equivalent.

(a) I is injective with regard to x(A) for each object A in /.

(b) Q is idempotent, i.e. becomes a reflector S/—Fix Q when its co-
domain is restricted to its image.

(c) Fix Q is the limit closure of I.

ProOF. (b) and (c) are clearly equivalent, since
I e Fix Q < image of Q < limit closure of /

and a reflective subcategory is limit closed.

(a)=-(b). We note that if I is injective with regard to a map f then
(f, 1) is a surjection, that is, a regular mono of #°°. Now I7), being a
right adjoint, preserves limits, so S(f)=/""" is a regular mono of /.
Thus it follows from condition (a) that S(«x(A)) is mono for each A.
Fakir’s result (Proposition 3 of [2]) then shows that Q is idempotent.

(b)=>(a). We have A—, QA >0S(A4) with x(A)m(A)=7(4).
Now every map u: A—/ can be extended to =, :S(A)—1, since w,p(A)=u.
Given any map v:Q(A4)—1, we let u=vn,(4). Then =, «k(A)n(A)=u=
vn,(A4). Since 7,(A4) is a reflection map of A4 into Fix Q, it follows from
Lemma 2 that 7 ,k(A4)=wv. Thus I is injective with regard to «(A).

This completes the proof of the theorem.

DErFINITION.  We shall call the object I of A «-injective if it satisfies
the equivalent conditions of the theorem. We call Q the localization
functor determined by 1.

CoOROLLARY. If I is injective with regard to all equalizers of pairs of
maps I 21% then Q is (after restricting its codomain) a reflector onto the
limit closure of I, which is Fix Q. If I is injective in s then Q takes regular
monos of & to regular monos of Fix Q.

Proor. The first statement is obvious. As for the second, let / be
injective in &/ and f: 4—B a regular mono of /. We already know that
S(f) is a regular mono of &/ which lies in Fix Q. Since Fix Q is the limit
closure of the injective /, Theorem 1 of [11] shows that S(f) is a regular
mono of Fix 0. Now «(4):0(A4)—S(A) is also a regular mono of Fix Q
and it is easily seen that the composition of two regular monos of Fix O
is a regular mono of Fix Q (since an object A4 is in Fix Q iff there is an
equalizer diagram A—I"I™). Thus «(B)Q(f)=S(f)x(A) is a regular

! The referee has pointed out that Lemma 2 can also be proved directly by observing
that m, and S(w;) make I—-S(I)_,S*(I) into a split equalizer diagram.
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mono of Fix Q. Since «(B) is mono in Fix O, Q(f) is also a regular
mono of Fix Q.

We remark that if o/ is well powered then, by the special adjoint
functor theorem, the limit closure of any object 7 is a reflective subcategory
of &/.

We shall now consider a number of examples. Further examples in
the categories of partially ordered sets, lattices, etc. are being studied
by B. Ballinger.

ExampLE 1. Take /= Mod R, where R is an associative ring with
unity, and let / be any injective right R-module. We claim that Q(4) is
then the usual localization of A4, also called the module of quotients of A,
with respect to the torsion theory determined by I (see [7]).

To prove this, let us provisionally denote the module of quotients by
Q’(A). Then Q’(4) is divisible (with respect to I), in the terminology of
[7] and may be regarded as a submodule of S(A4), since the kernel of 7(A4)
is the torsion submodule of 4. Now S(A4), being a product of copies of I,
is torsion-free (with respect to I), hence S(4)/Q’(A) is torsion-free. Since
Q'(A)/Im n(A) is torsion, it is the torsion submodule of S(4)/Im n(A4).
Thus s € Q'(4) if and only if

) Vouscn-1(un(A) = 0=-u(s) = 0),
that is,
Vo,wis(a-1(07(A) = wn(A4) = v(s) = w(s)).
Therefore Q'(A) is the joint equalizer of all pairs of maps which coequalize
7(A4). Hence, by Lemma 1, Q'(4)=0(4), as was to be proved.

ExamPLE 2. Take &/ to be the category of topological spaces and
let 7 be the unit interval [0, 1]. [ is not injective, but it is x-injective. It is
easily seen that Q(A) is the closure in S(A4) of the image of n(A4). Thus
the construction of Q(4) is the familiar construction of the Stone-Cech
compactification f(A), as described by Cech [1]. Condition (a) in this
example is simply a special case of Tietze’s theorem, since S(A4)=I“*"" is
normal and Q(A4) is a closed subspace.

Of course, there is no reason for § to preserve regular monos, as I is
not injective (with regard to all regular monos) in 2.2

ExampLE 3. Take &/ to be the category of uniform spaces (not
necessarily Hausdorff) and let I=[0, 1]. Regular monomorphisms in
& are easily seen to be the same as subspace inclusions. It is known that
I'is injective with regard to subspace inclusions (see [6]).

The reflector Q is the Samuel compactification (see [12] or [5]), that
is, Fix Q consists of all compact Hausdorff uniform spaces.

* George Reynolds has observed that one can similarly obtain the real compacti-
fication of A4 by taking I to be the real line.
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To see this, we note that Q(A) is easily shown to be the closure in
S(4) of the image of 7(4). Now S(4)=I“*" is compact, and therefore
so is the closed subspace Q(4). (We observe that the forgetful functor
from uniform to topological spaces preserves products.) Conversely,
assume that A is compact Hausdorff, and recall that all continuous
mappings from a compact Hausdorff uniform space are uniformly con-
tinuous. Then Q(4) is the Stone-Cech compactification of 4, and hence
7,(A) is an isomorphism.

There are many other injectives in &7. For example, if M is any metriz-
able uniform space then (M, I) with the obvious metric is injective [5].
It is not clear what the associated category Fix Q is. It certainly contains
only complete spaces. It seems unlikely that there is any M for which Fix Q
contains all complete spaces, that is, such that Q(A4) is the Hausdorff
completion of 4.3

ExaMPLE 4. Let o be the category of presheaves on a small category
Z, that is, the category of all functors Z°°—%. Suppose that Z isequipped
with a Grothendieck topology, then one can construct a huge injective /
whose limit closure is the category of sheaves for the given topology.
For any presheaf 4, Q(A) is then the associated sheaf.

The story is somewhat different when & is an elementary topos in the
sense of Lawvere and Tierney. Since & is not necessarily complete, our
construction of the triple S does not work. However, an analogous
construction does work, and we shall sketch it briefly.

Let I be any injective in &7. Since &7 is a cartesian closed category,
we can obtain a triple S on &/ from the selfadjoint functor &/—.o/°P
taking 4 to I, with S(4)=I*. Fakir’s construction applied to S then
gives an idempotent triple Q. However, Fix Q is not the limit closure of
I; it must also be closed under internal powers. It turns out that Q preserves
all finite limits.

The work of Lawvere and Tierney suggests which injectives I one should
single out for consideration: Let j be any Heyting endomorphism of the
subobject classifier {2, then take /=();, the retract of Q determined by j.
Fix Q will then be the category of j-sheaves. (For definitions see the dis-
cussion of the work of Lawvere and Tierney in [3].)

We plan to elaborate the details of this example in a sequel to the present
paper.

We shall give another interpretation of the localization functor Q

3 Indeed, George Reynolds has observed that the completion functor in uniform
spaces cannot be obtained by our method from a single uniform space I, because
any such space has a cardinal number associated with it which is preserved by products
and subspace formation, namely the smallest infinite cardinal such that every uniform
cover has a refinement less than it.
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with the help of the Eilenberg-Moore category of a triple. It will be con-
venient here to replace the complete category & by its opposite, the co-
complete category #=/°P. We consider an object P of # which is
k-projective, that is, x-injective as an object of &7.

The functor U= (P, —): #— hasaleftadjoint F, where F(X)= ;e x P,
let us say with adjunction #:id —UF and coadjunction ¢:FU—id. The
triple (UF, n, UeF) on & gives rise to the Eilenberg-Moore category
FUF | whose objects are certain pairs (X, &), where &: UF(X)—X in &.
One studies the so-called comparison functor K: Z—%V¥ given by

K(B) = (U(B), Ue(B)),  K(b) = U(b).
This has a left adjoint M (see [9, p. 151, Exercise 5]), where M(X, &)
is the coequalizing object of the pair

F (&)
FUF(X) —_ F(X).
eF(X)

A simple calculation shows the following:

PrOPOSITION 1. If K is the comparison functor of (4, U), M its left
adjoint, and Q the localization functor on #°°, then MK=Q.

We may also call Q the colocalization functor on #4.

We consider an interesting special case.

ExampLE 5. Take #= Mod R and let P be any finitely generated
k-projective right R-module. Let E be the ring (P, P), then (P, —) may
be considered as a functor Z—Mod E with left adjoint (=) ® P. Since P
is finitely generated, (P, —) takes sums in & to sums in Mod E. Let Up
denote the forgetful functor Mod E—& . Then the triple UF is given by

UF(X) = UE(P, Z P) ~ U,.(Z E).

Now this is the triple associated to Mod E, so V¥ =Mod E. The functor
K is clearly (P, —), hence M=(—) ®,, P, and we have

0(B)=(P,B) Sy P.
This formula actually holds in a more general situation. Let 4 be any
cocomplete abelian category and P any k-projective object which is small
in the sense that (P, —):%— Mod E preserves sums.

The smallness of P will follow easily if it is assumed to be finitely
generated in the sense of [4], that is, that (P, —) preserves directed colimits
of monomorphisms. In this definition it makes no difference whether
(P, —) is considered as a functor into Mod E or into & .4

4 We are indebted to the referee for criticizing the original discussion of this example,
in which the condition that P be finitely generated had been overlooked.
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PROPOSITION 2. Let Q be the colocalization functor determined by
the k-projective object P of the cocomplete category 9. Then the following
conditions are equivalent.

(1) Q is canonically isomorphic to the identity, that is, n, is a natural
isomorphism.

(2) P is a regular generator in the sense that for each object B of #
there is a regular epi from some multiple of P to B.

(3) For each object B of & there is a coequalizer diagram mPnP—B,
for some cardinal numbers m and n.

(4) % is the colimit closure of P.

Proor. The implication (4)=>(1) is an immediate consequence of
our theorem. For, since P is k-projective, the theorem tells us that the
colimit of P is Fix @, and by (4) this is &, so that (1) holds.

The implications (1)=>(2)=>(3)=>(4) hold even without the assumption
that P is x-projective. The first and last implications are clear; we shall
prove that (2)=-(3). Assume (2) and let B be any object of #. Then there
is a coequalizer diagram B'ZnP—B and a regular epi mP—B’, hence a
coequalizer diagram mP—nP—B.

Clearly (1) implies that P is k-projective. Hence (1) asserts that P is a
k-projective regular generator.

We present the following variant of Linton’s theorem (see [8, p. 88]).

PROPOSITION 3. Let P be an object of the category # and U=%(P, —),
then (8, U) is varietal (triplable) if and only if

(1) % is cocomplete and has kernel pairs,

(2) P is a projective regular generator,

(3) every equivalence relation in % is a kernel pair.

A pair of maps R34 in & is here called an equivalence relation if
#(B, R\ %#(B, A) is an equivalence relation in % for every object
B of #.5

PROOF. Necessity of conditions. (1) and (3) are well-known properties
of varietal categories, and (2) follows from Proposition 1.

Sufficiency of conditions. We verify Linton’s conditions FIT ([8, p. 88]).
We know that U has a left adjoint and that (FIT), holds, that is, & has
kernel pairs and coequalizers. (FIT), says that w: 4—B in & is a regular
epi if and only if U(#) is a surjection.

Since P is projective, U takes regular epis to surjections. Conversely,
if U(w) is a surjection, then FU(w) is a regular epi, since F preserves

® Both M. Barr and C. Mulvey have informed us that they have obtained essentially
the same version of Linton’s theorem.
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limits. Now consider the following commutative diagram:

FU) 222, FuB)

s(A)l le(b’)

A———w———>B

Since Q=zid canonically, ¢(4) and &(B) are regular epis. Now the com-
position &(B)FU(x) of two regular epis is a regular epi, since # is the
limit closure of the projective P (see [11, Lemma 2.2]). Since we(4) is a
regular epi and ¢(A4) is epi,  is a regular epi.

(FIT), says that p,, p,: R34 is a kernel pair in & if and only if U(p,),
U(pz): U(R)Z3 U(A) is a kernel pair in . The “only if” part is obvious,
since U is representable. Consider the full subcategory € of # consisting
of those objects B for which the representable functor (B, —) takes
(p1, p2) into a kernel pair. € contains P and is obviously replete. It is
easily seen to be closed under colimits, and since 4 is the colimit closure
of P, =94.

COROLLARY 1. Let &/ be a complete Abelian category with an in-
Jective cogenerator I. Then /°° is varietal with respect to the functor

(=, I).

PROOF. #=./°" satisfies the conditions of Proposition 3 with P=1.
Indeed, conditions (1) and (2) are obvious. To prove (3) we observe that in
Mod R every equivalence relation is a kernel pair. By Mitchell’s embedding
theorem, the same is true in any Abelian category, hence in the opposite
of an Abelian category.

ExaMPLE 6. The opposite of any Grothendieck category &7 is varietal,
as &/ contains an injective cogenerator. Oberst [10] has also described
&/°P as a concrete category with the forgetful functor &7 (—, I). However,
the structure he defines involves topology and is not obviously varietal.

COROLLARY 2. Let Q be the colocalization functor associated with the
projective object P of the cocomplete category #B. Assume % has kernel
pairs and all equivalence relations in the category Fix Q are kernel pairs.
Then Fix Q is varietal with respect to the functor (P, —):Fix Q—.

Proor. Fix Q satisfies conditions (1) to (3) of Proposition 3.

Example 6 could also have been deduced from Corollary 2 by means of
the Gabriel-Popescu theorem.

ExampLE 7. Let &/ be the category of all set-valued sheaves with
respect to a Grothendieck topology. Then .7°P is varietal.

A proof will be given in a sequel to this paper.
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