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LOCALIZATION  AT  INJECTIVES  IN  COMPLETE

CATEGORIES

I.   LAMBEK  AND   B.   A.   RATTRAY

Abstract. We consider a complete category .c/. For each

object /of sJ we define a functor Q:sJ-*-.?i and obtain a necessary

and sufficient condition on /for Q, after restricting its codomain, to

become a reflector of .rJ onto the limit closure of /. In particular,

this condition is satisfied if / is injective in sJ with regard to

equalizers. Among the special cases of such reflectors are: the

reflector onto torsion-free divisible objects associated to an injective

/ in Mod R; the Samuel compactification of a uniform space; the

Stone-Cech compactification.

We give a second description of Q in terms of a triple on sets.

If/ is injective and the functor Q is equivalent to the identity then,

under a few extra conditions on sJ, s¿ov is triplable over sets with

regard to the functor taking A to .</(/<, /).

We recall some notation and definitions. We write sé (A, B) or just

(A, B) for the set of all maps from A to B in sé. £f denotes the category

of sets. The limit closure of an object / of sí is the smallest full replete

subcategory of sé closed under limits and containing I. / is injective with

regard to the map/:.4—>-B if sé(f, I):sé(B, I)-+sé(A, I) is a surjection.

We call I injective in sé if it is injective with regard to all regular mono-

morphisms in sé. A regular monomorphism is a map which happens to

be an equalizer.

The object / determines functors

<-,/) z<->
sé-> Sfov-> sé,

where (—, /) is a left adjoint of /(~>, in view of the natural isomorphism

yov(sé(A, I), X) = ¿f(X, sé(A, I)) ex sé(A, Ix).

Thus the composition 5=/(_,/) is part of a triple (standard construction)

(S, r¡, p) on sé (see [9]). For future reference we describe r¡(A):A-*S(A)

and also S(f) for any map f:A-+B.
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Let u* denote the map A—*-I' corresponding to u:X—>-iA, I), defined

by the formula Va.eY7ra.w*=w(.x), where irx is the canonical projection

Ix-+I. Then rjiA)=l*A,1), that is,

(*) VB6U.r)7v?(/l) = g.

The map S(f)=Tf'I):PAJ^fB^ is given thus

(       ) Vfe{A B)V'heUj,nTThS(f)  =   TThf.

Following Fakir [2], we define the functor Q:sé^>-sé as the equalizer

K IS.

Fakir showed that Q is part of a triple (Q, r¡x, px) and that, if S(k(A)) is

mono for each object A, then Q is idempotent.

Let Fix Q be the full subcategory of sé consisting of all those objects

A for which r}x(Ä):A-*Q(A) is an isomorphism. Since, QiA) is only

defined up to isomorphism, we can assume that each such r¡xiA) is the

identity map of A. Then Q is idempotent if and only if, by restriction of the

codomain to the image, it induces a reflector sé—> Fix Q. The reflection

map from A into Fix Q is then r¡x(A):A^-Q(A), which is defined by the

condition KÍA)r}xiA) = r¡iA).

Before stating our main result, we require two lemmas.

Lemma 1. k(A):Q(A)—+S(A) is the joint equalizer of all pairs ofmaps

S(A)zX¡ which coequalize rj(A):A-*S(A).

Proof. Consider any map u:SiA)^>-I. Then, by (*), TTur¡SiA)=u,

and by (**), TruSr]iA)=irunU). Thus kíA) equalizes all pairs of maps

(u,TTun(A)). Now let v:S(A)-~>I be such that ur¡(A) = vr)(A). Then kíA)

equalizes (w, v), since

ukíA) = 7tu^A)kíA) = troniA)KÍA) = vk(A).

Conversely, any map which equalizes all («, v) such that ur¡iA) = vniA)

equalizes («, ttu^A)) m particular, since trun(A)r]iA)=ur¡iA) by (*). Hence

it equalizes r¡SiA) and Sr¡iA).

Lemma 2.   I e Fix Q.

Proof. By (*), -nx r¡il)=\1, hence r¡il) is the equalizer of the pair of

maps ir¡il)trx, isa))- Thus r¡il) is the joint equalizer of all pairs of maps

/<z-7)Z^</'7) which coequalize »?(/), and therefore the joint equalizer of

all pairs of maps 7(7,7)^/ which coequalize ??(/). In view of Lemma 1,
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k(I) is this same equalizer. Hence the unique map r¡y(T):I~>Q(I) such that

K(I)r¡y(I)=v(I) is an isomorphism, and so I is in Fix Q.1

Theorem.    The following statements are equivalent.

(a) / is injective with regard to K(A)for each object A in sé.

(b) Q is idempotent, i.e. becomes a reflector sé-+Fix Q when its co-

domain is restricted to its image.

(c) Fix Q is the limit closure of I.

Proof,    (b) and (c) are clearly equivalent, since

I e Fix Q c image of Q c limit closure of I

and a reflective subcategory is limit closed.

(a)=>(b). We note that if I is injective with regard to a map / then

(/, /) is a surjection, that is, a regular mono of y°v. Now /(_), being a

right adjoint, preserves limits, so S,(/)=/(/'7) is a regular mono of sé.

Thus it follows from condition (a) that S(k(A)) is mono for each A.

Fakir's result (Proposition 3 of [2]) then shows that Q is idempotent.

(b)=>(a). We have A^M)Q(A)-+kU)S(A) with K(A)r,y(A)=-n(A).

Now every map h :/I—»-/can be extended to ttu:S(A)->-I, since -nur\(A) = u.

Given any map v:Q(A)—>I, we let u—vr\y(A). Then tt uK(A)r\y(A) = u=

vr¡y(A). Since r¡y(A) is a reflection map of A into Fix Q, it follows from

Lemma 2 that ttuk(A) = v. Thus / is injective with regard to k(A).

This completes the proof of the theorem.

Definition. We shall call the object I of A K-injective if it satisfies

the equivalent conditions of the theorem. We call Q the localization

functor determined by /.

Corollary. If I is injective with regard to all equalizers of pairs of

maps IxzXIr tnen Q >s (qfter restricting its codomain) a reflector onto the

limit closure of I, which is Fix Q. If I is injective in sé then Q takes regular

monos of sé to regular monos of Fix Q.

Proof. The first statement is obvious. As for the second, let / be

injective in sé andf:A—"B a regular mono of sé. We already know that

S(f) is a regular mono of sé which lies in Fix Q. Since Fix Q is the limit

closure of the injective I, Theorem 1 of [11] shows that S(f) is a regular

mono of Fix Q. Now k(A):Q(A)—*S(A) is also a regular mono of Fix Q

and it is easily seen that the composition of two regular monos of Fix Q

is a regular mono of Fix Q (since an object A is in Fix Q iff there is an

equalizer diagram A^-Inz$.Im)- Thus K(B)Q(f) = S(f)i<(A) is a regular

1 The referee has pointed out that Lemma 2 can also be proved directly by observing

that 77x and 5(^0 make /->-5(/)_,52(/) into a split equalizer diagram.
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mono of Fix Q. Since k(B) is mono in Fix Q, Qif) is also a regular

mono of Fix Q.

We remark that if sé is well powered then, by the special adjoint

functor theorem, the limit closure of any object /is a reflective subcategory

of sé.

We shall now consider a number of examples. Further examples in

the categories of partially ordered sets, lattices, etc. are being studied

by B. Ballinger.

Example 1. Take sé= Mod R, where R is an associative ring with

unity, and let / be any injective right R-module. We claim that QiA) is

then the usual localization of A, also called the module of quotients of A,

with respect to the torsion theory determined by / (see [7]).

To prove this, let us provisionally denote the module of quotients by

Q'(A). Then Q'(A) is divisible (with respect to /), in the terminology of

[7] and may be regarded as a submodule of SiA), since the kernel of r¡iA)

is the torsion submodule of A. Now SiA), being a product of copies of I,

is torsion-free (with respect to /), hence SiA)/Q'iA) is torsion-free. Since

Q'iA)¡lm rjiA) is torsion, it is the torsion submodule of S(A)/lm rj(A).

Thus í e Q'iA) if and only if

Vu-.s(A)~i(uv(A) = 0=>u(s) = 0),
that is,

Vv.u,siA)~Ávy(A) = wrj(A)^v(s) = w(s)).

Therefore Q'(A)is the joint equalizer of all pairs of maps which coequalize

r¡(A). Hence, by Lemma 1, Q'(A) = Q(A), as was to be proved.

Example 2. Take sé to be the category of topological spaces and

let / be the unit interval [0, 1]. I is not injective, but it is ^-injective. It is

easily seen that Q(A) is the closure in S(A) of the image of r\(A). Thus

the construction of Q(A) is the familiar construction of the Stone-Cech

compactification ß(A), as described by Cech [1]. Condition (a) in this

example is simply a special case of Tietze's theorem, since S(A)=I<A,I) is

normal and Q(A) is a closed subspace.

Of course, there is no reason for ß to preserve regular monos, as / is

not injective (with regard to all regular monos) in sé.2

Example 3. Take sé to be the category of uniform spaces (not

necessarily Hausdorff) and let 7= [0,1]. Regular monomorphisms in

sé are easily seen to be the same as subspace inclusions. It is known that

I is injective with regard to subspace inclusions (see [6]).

The reflector Q is the Samuel compactification (see [12] or [5]), that

is, Fix Q consists of all compact Hausdorff uniform spaces.

2 George Reynolds has observed that one can similarly obtain the real compacti-

fication of A by taking / to be the real line.
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To see this, we note that Q(A) is easily shown to be the closure in

S(A) of the image of n(A). Now S(A)=IlA,IX is compact, and therefore

so is the closed subspace Q(A). (We observe that the forgetful functor

from uniform to topological spaces preserves products.) Conversely,

assume that A is compact Hausdorff, and recall that all continuous

mappings from a compact Hausdorff uniform space are uniformly con-

tinuous. Then Q(A) is the Stone-Cech compactification of A, and hence

r¡y(A) is an isomorphism.

There are many other injectives in sé. For example, if M is any metriz-

able uniform space then (M, T) with the obvious metric is injective [5].

It is not clear what the associated category Fix Q is. It certainly contains

only complete spaces. It seems unlikely that there is any M for which Fix Q

contains all complete spaces, that is, such that Q(A) is the Hausdorff

completion of A.3

Example 4. Let sé be the category of presheaves on a small category

3C, that is, the category of all functors ,f"op-»-^'. Suppose that áT is equipped

with a Grothendieck topology, then one can construct a huge injective /

whose limit closure is the category of sheaves for the given topology.

For any presheaf A, Q(A) is then the associated sheaf.

The story is somewhat different when sé is an elementary topos in the

sense of Lawvere and Tierney. Since sé is not necessarily complete, our

construction of the triple 5 does not work. However, an analogous

construction does work, and we shall sketch it briefly.

Let / be any injective in sé. Since sé is a cartesian closed category,

we can obtain a triple S on sé from the selfadjoint functor sé^-sé°v

taking A to Ia, with S(A)=UA. Fakir's construction applied to S then

gives an idempotent triple Q. However, Fix Q is not the limit closure of

/; it must also be closed under internal powers. It turns out that Q preserves

all finite limits.

The work of Lawvere and Tierney suggests which injectives / one should

single out for consideration : Let j be any Heyting endomorphism of the

subobject classifier Í2, then take /=03, the retract of Q determined by/

Fix Q will then be the category of y'-sheaves. (For definitions see the dis-

cussion of the work of Lawvere and Tierney in [3].)

We plan to elaborate the details of this example in a sequel to the present

paper.

We shall give another interpretation of the localization functor Q

3 Indeed, George Reynolds has observed that the completion functor in uniform

spaces cannot be obtained by our method from a single uniform space /, because

any such space has a cardinal number associated with it which is preserved by products

and subspace formation, namely the smallest infinite cardinal such that every uniform

cover has a refinement less than it.
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with the help of the Eilen berg-Moore category of a triple. It will be con-

venient here to replace the complete category sé by its opposite, the co-

complete category 3S=sé0V. We consider an object P of J which is

/c-projective, that is, «-injective as an object of sé.

The functor <7= (P,-): ®^-Sr° has a left adjoint F, where F(X) = ZœxP,

let us say with adjunction rj-.id-^-UF and coadjunction e:FU—»-id. The

triple (UF, r¡, UeF) on £f gives rise to the Eilenberg-Moore category

¡fVF, whose objects are certain pairs (X, |), where £ : VF(X)-^X in £f.

One studies the so-called comparison functor K:3S~^-Sr"UF given by

K(B) = (U(B), Ue(B)),        K(b) = U(b).

This has a left adjoint M (see [9, p. 151, Exercise 5]), where M(X, f)

is the coequalizing object of the pair

FUF(X)-* FIX).
cFIX)

A simple calculation shows the following:

Proposition 1. If K is the comparison functor of (âS, U), M its left

adjoint, and Q the localization functor on 3$op, then MK=Q.

We may also call Q the colocalization functor on 38.

We consider an interesting special case.

Example 5. Take 38= Mod R and let P be any finitely generated

/c-projective right R-moduIe. Let E be the ring (P, P), then (P, —) may

be considered as a functor âS—»-Mod E with left adjoint (—) <g>E P. Since P

is finitely generated, (P, — ) takes sums in 38 to sums in Mod E. Let UK

denote the forgetful functor Mod E-*^. Then the triple UF is given by

UF(X) = Uk(p, 2 P) = ^(2 E)-

Now this is the triple associated to Mod E,so£f * =Mod E. The functor

AT is clearly (P, —), hence A/ = (—) ®KP, and we have

QiB)=iP,B)QEP.

This formula actually holds in a more general situation. Let 38 be any

cocomplete abelian category and P any /oprojective object which is small

in the sense that (P, —):38^>- Mod E preserves sums.

The smallness of P will follow easily if it is assumed to be finitely

generated in the sense of [4], that is, that (P, —) preserves directed colimits

of monomorphisms. In this definition it makes no difference whether

(P, —) is considered as a functor into Mod E or into £f}

4 We are indebted to the referee for criticizing the original discussion of this example,

in which the condition that P be finitely generated had been overlooked.
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Proposition 2. Let Q be the colocalization functor determined by

the K-projective object P of the cocomplete category 38. Then the following

conditions are equivalent.

(1) Q is canonically isomorphic to the identity, that is, rjy is a natural

isomorphism.

(2) P is a regular generator in the sense that for each object B of 3$

there is a regular epi from some multiple of P to B.

(3) For each object B of 38 there is a coequalizer diagram mPZ^nP-^-B',

for some cardinal numbers m and n.

(4) 38 is the colimit closure of P.

Proof. The implication (4)=>(1) is an immediate consequence of

our theorem. For, since P is K-projective, the theorem tells us that the

colimit of F is Fix Q, and by (4) this is ÛS, so that (1) holds.

The implications (1)=>(2)=>(3)=>(4) hold even without the assumption

that P is K-projective. The first and last implications are clear; we shall

prove that (2)=>(3). Assume (2) and let B be any object of 3$. Then there

is a coequalizer diagram B'z$nP-+B and a regular epi mP-^-B', hence a

coequalizer diagram mPz^nP^-B.

Clearly (1) implies that P is K-projective. Hence (1) asserts that F is a

K-projective regular generator.

We present the following variant of Linton's theorem (see [8, p. 88]).

Proposition 3. Let P be an object of the category 38 and V=38(P, —),

then (38, U) is varietal (triplable) if and only if

(1) 38 is cocomplete and has kernel pairs,

(2) P is a projective regular generator,

(3) every equivalence relation in 3# is a kernel pair.

A pair of maps Rz^A in 38 is here called an equivalence relation if

38(B, R)z$¿@(B, A) is an equivalence relation in SP for every object
B of 3S.h

Proof. Necessity of conditions. (I) and (3) are well-known properties

of varietal categories, and (2) follows from Proposition 1.

Sufficiency of conditions. We verify Linton's conditions FIT ([8, p. 88]).

We know that U has a left adjoint and that (FIT)0 holds, that is, 38 has

kernel pairs and coequalizers. (FIT)y says that v.A^-B in 38 is a regular

epi if and only if U(tt) is a surjection.

Since P is projective, U takes regular epis to surjections. Conversely,

if U(tr) is a surjection, then FU(n) is a regular epi, since F preserves

6 Both M. Barr and C. Mulvey have informed us that they have obtained essentially

the same version of Linton's theorem.
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limits. Now consider the following commutative diagram:

FUW
FU(A)-► FU(B)

c(A) >AV)

-s* B

Since ö=id canonically, s(A) and e(B) are regular epis. Now the com-

position s(B)FU(tt) of two regular epis is a regular epi, since 38 is the

limit closure of the projective P (see [11, Lemma 2.2]). Since tts(A) is a

regular epi and e(A) is epi, 7r is a regular epi.

(FIT)2 says that py,p2:Rz$A is a kernel pair in 38 if and only if U(py),

U(p2): U(R)ZX U(A) is a kernel pair in SP. The "only if" part is obvious,

since U is representable. Consider the full subcategory <€ of 38 consisting

of those objects B for which the representable functor (B, —) takes

(py,p2) into a kernel pair, të contains P and is obviously replete. It is

easily seen to be closed under colimits, and since 38 is the colimit closure

of P, <ê=38.

Corollary 1. Let sé be a complete Abelian category with an in-

fective cogenerator I. Then séov is varietal with respect to the functor

sé (-,!).

Proof. 38=sé°v satisfies the conditions of Proposition 3 with P=I.

Indeed, conditions (1) and (2) are obvious. To prove (3) we observe that in

Mod R every equivalence relation is a kernel pair. By Mitchell's embedding

theorem, the same is true in any Abelian category, hence in the opposite

of an Abelian category.

Example 6. The opposite of any Grothendieck category sé is varietal,

as sé contains an injective cogenerator. Oberst [10] has also described

sé°v as a concrete category with the forgetful functor séi—, »0- However,

the structure he defines involves topology and is not obviously varietal.

Corollary 2. Let Q be the colocalization functor associated with the

projective object P of the cocomplete category 38. Assume 31 has kernel

pairs and all equivalence relations in the category Fix Q are kernel pairs.

Then Fix Q is varietal with respect to the functor (P, — ):Fix Q-^-SP.

Proof.    Fix Q satisfies conditions (1) to (3) of Proposition 3.

Example 6 could also have been deduced from Corollary 2 by means of

the Gabriel-Popescu theorem.

Example 7. Let sé be the category of all set-valued sheaves with

respect to a Grothendieck topology. Then séop is varietal.

A proof will be given in a sequel to this paper.
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