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K-GORENSTEIN RINGS

HANS-BJ0RN  FOXBY

Abstract. The object of this note is to study commutative

noetherian n-Gorenstein rings. The first result is: if each module

satisfying Samuel's conditions (a,) for some i^n is an /th syzygy,

then the ring is n-Gorenstein. This is the converse to a theorem of

Ischebeck. The next result characterizes n-Gorenstein rings in terms

of commutativity of certain rings of endomorphisms. This answers a

question of Vasconcelos. Finally the last result deals with

embedding of finitely generated modules into finitely generated

modules of finite projective dimension.

1. Notation. Throughout this note A will denote a commutative

noetherian ring. Modules will in general be finitely generated (=f.g.)—

the exceptions will be easy to identify. For a module M and a prime ideal p

let depth Mv denote the v4p-depth (=/4p-homological codimension) of

Afp, and let gr(p) denote the grade of p ( = maximal length of /1-regular

sequence in p). Recall that gr(p)=inf{depth /lq|q e V (p)}.

For a module M we define Q¿(M), z'_0, and D(M) as follows:

Cl*(M) = Coker(Fi+1 -*F,)

D(M) = Coker(F0* — Pf)
where

-► />,-*->Px-+Po^M-+0

is any projective resolution of M with each Pi f.g. and *=Hom(—, A).

Furthermore write F¿=Ext¿(—, A). Q'(M) and D(M) depends of course

on the choice of projective resolution, but U'(M) is unique up to pro-

jective equivalence and E'(D(M)) is unique (cf. [1, Chapter 2, §1]).

2. Four properties on a module. For a module M and an integer

«_0 we will consider the following four properties on M:

(an) Each ^-regular sequence of length at most n is also M-regular

(for n=l this means simply: M is torsion free).

(bn) depth A/p_inf(w, depth Ap) for all prime ideals p (n=l : Ass(Af)S

Ass(A)).
(sn) M is an «th syzygy, that is: M=Cln(L) for a suitable L (and a

suitable projective resolution) (n=l : M is torsionless).
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(tB) M is without «-torsion (or «-torsion free), that is: E'(D(M))=0 for

l^/'^M («=1: Mis torsionless; «=2: Ai"is reflexive, [1, (2.1), p. 48]).

The next four results are known and included to show the relations

between these four properties («^0 is a fixed integer in what follows).

2.1. Proposition.   For all modules (stillfig.) we have:

(t„) => (sn) => (bn) => (a J.

Cf. [1, Theorem 2.17] and [6, Satz 4.4].

2.2. Proposition. (a„) and (bn) are equivalent for all modules if A

satisfies Serre's condition :

(S„) depth Ap^.'mf(n, ht(p)) for all prime ideals (or equivalently: Av

is a Cohen-Macaulay ring for all prime ideals p with depth Av<n), cf. [8,

Proposition 6].

In Proposition 3.3, we shall see that the equivalence of (an) and (bj

characterizes a slightly wider class of rings than the (Sn)-rings.

2.3. Proposition. All four properties are equivalent (i.e. (an)=>(tn)) //

A is n-Gorenstein, that is:

(GJ Av is Gorenstein for all prime ideals p with depth Ap<n.

Cf. [6, 4.6 Satz]. It will be proved later that the converse of this also

holds. This answers Question 4.8 of Ischebeck [6], but is already known

in the following special cases:

If «=1 it is proved by Vasconcelos [9, Theorem A.l].

If «=2 and A satisfies (S2), then it is proved by Fossum and Reiten

[3, Proposition 9].

If A is Cohen-Macaulay and is a homomorphic image of a Gorenstein

ring then it is proved for all n in [4, Proposition 3.2].

In [3] several equivalent conditions on «-Gorenstein rings are examined,

we shall use the following (see [1, Proposition 4.21]):

2.4. Proposition. Each (n + \)th syzygy is without (n+l)-torsion if and

only if A is n-Gorenstein.

3. The properties (an) and (b„). From the proof of [8, Proposition 6]

one easily obtains:

3.1. Lemma. M is an (^-module if and only //depth Mp^inf(«, gr(p))

for all p.

The next two lemmas give examples of (an)- and (b„)-modules :

3.2a. Lemma. If all p e Ass(M) have gr(p)<« then D"-1^) is an

(a.n)-modu/e.
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Proof. Since Í2"-1(Af) is a (n— l)th syzygy it is a fortiori an (an_x)-

module (Proposition 2.1). Therefore assume gr(p)_w (and we want to

show depth QB_1(A/)p2:w). It follows from the homological characteriza-

tion of depth that depth On-1(^0Pèinf(depth Ap, depth Mp+n-l)^n,

since depth Mp^.l by assumption.

3.2b. Lemma. // all p e Ass(M) have depth Ap<n then Cln~1(M) is a

(bn)-module.

3.3. Proposition.    The following statements are equivalent:

(1) For all i"_/z each (a{)-module satisfies (b¿).

(2) depth /íp_inf(«, depth Aq)for all prime ideals p and q w/zere P2q.

(3) depth /lp_inf(«, ht(p)—l)/or all prime ideals p.

(4) gr(p)^inf(«, depth Ap)for all prime ideals p.

(5) p e Ass(A/(ax, ■ ■ ■ , ag)) for all maximal A-regular sequences

ax, • ■ • , ag in a prime ideal p with g=gr(p)</?.

(6) Each prime ideal of grade less than n is an associated prime of a

module of finite G-dimension (for definition see [1, Chapter 3]).

Proof. (1) implies (2). Assume qgp, d=depth Ap<n. D.d(A/q) is

by Lemma 3.2a an (ad+1)-module and hence also a (bd+1)-module by as-

sumption. Now depth Qd(^/q)q=depth Qj, (k(q))^d<d+l, and hence

depth Aq^d as desired.

(2) implies (3).   By [2, Corollary 5.3] we have

ht(p) < sup{depth Aq + 1 | q S p}.

(3) implies (4). Assume g=gr(p)=depth Aq<n, q 6 V (p). If p=q we

are done, and if p?¿q we have depth /ip_ht(p)_ht(q)—l_ depth Aq=g.

(4) implies (5). Let ax, • • • , ag e p be an /4-regular sequence, g=

gr(p)<«. Then g=depth /lp=depth(/ip/a/lp)-|-g, where a = (ax, ■■• , ag),

and hence dtpth(A¡a)p=0, i.e. p e Ass(A/a).

(6) implies (4). Assume g=gr(p)=depth Aq<n, q e V (p). Then

g=depth Aq^.G-dim Afq^G-dim Af„=depth Ap—depth Mp=depth Ap,
cf. [1, Chapter 3].

That (5) implies (6) and that (4) implies (1) is obvious (cf. respectively

[1, Chapter 3] and Lemma 3.1).

4. Equivalence of all four properties.

4.1. Theorem.    The following statements are equivalent:

(1) A is an n-Gorenstein ring.

(2) Each (an)-modu!e is without n-torsion.

(3) For all i, 1 _/=/i, each (a¿)-module is an ith syzygy.

(4) Each (bn)-module is without n-torsion.

(5) For all i, 1 =/=«, each (b^-module is an ith syzygy.
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Proof. That (1) implies both (2) and (3) follows from Proposition

2.3, and from Proposition 2.1 we know that (4) and (5) are weaker than

respectively (2) and (3).

(4) implies (5). Since each nth syzygy is a (b„)-module and hence without

«-torsion by assumption, we conclude that A is («—l)-Gorenstein, by

Proposition 2.4. By Proposition 2.3 we get that for all /<« each (b,)-

module is an z'th syzygy, and a (bn)-module is already an «th syzygy by

assumption.

(5) implies (1). First we treat the case «=1. For p e Ass(A) let p<¿) denote

the /th symbolic power of p. A/pU) is a (b^-module and hence torsionless.

Therefore p(i)=Ann x¿ for a suitable element x¿ in some free ^-module,

and we conclude that p(i)=Ann(2I,) for a suitable ideal %. This gives

Ann(Ann(p(i,))=p<i>. From the descending chain: p(llapl2)2- • -2

p<">;2... we obtain an ascending chain: Ann(p(1))g Ann(p<2))g- • -g

Ann(p(¿))£- • ' • That is: Ann(p(i))=Ann(p(i+1)) for /' big enough, and

hence p(i,=p<i+1>. By passing to the local ring Ap we obtain: (pAvy=

p<,,/lp=p(!+1)/4p=(p/ip)i+1, and hence (p^p)¡=0, i.e. ht(p)=0. Now it is

proved that all associated primes are of height 0, that is: A is an (S^-ring,

and hence (ai)<=>(bx), so by Vasconcelos [9, Theorem A.l] A is 1-Goren-

stein. This completes the proof in the case «=1

Now back to the proof in the general case: «^1. Let a1; • • • ,a¡,

/<«, be any /1-regular sequence. For an ,4-module X we will write

X=X/(a1, • • • , at)X. We are going to prove that any (bO-zi-module is a

torsionless /i-module, because this will imply that /fis 1-Gorenstein, and

hence that A is «-Gorenstein by [6, Theorem 3.15].

Let M be any (bjV/i-module. If p e AssA(M) then

p' = p/(fl!, ■■■ ,at)e AssÂ(M) g Ass^/T),

i.e. depth ^p=/+depth /Tp.=<</+1. By Lemma 3.2b K=D.'A(M) is a
(bm)-/i-moduIe and hence an (/+ l)th syzygy by our assumption. Let

0->-A'-»-F->-C->-0 be exact with F projective and C an z'th syzygy. We have

Torj^C, Ä)=0, and hence an exact sequence 0^-R-*F. This shows that

A7 is a torsionless /f-module. Furthermore we have TorL4(Q.'A~1(M), Ä)=

Torf(M,Ä)=M, the last isomorphism holds because tol,-",at€

AnnA(M). Now, since K=Q.lA(M) there is an exact sequence Q-+K-+-F-*-

Í2^¡"1(Af)^0 with F free. Tensoring with Ä gives an exact sequence 0-»-

M->-K, that is: M is a submodule of a torsionless ^-module, and hence

M is torsionless as an /f-module and this was what we desired.

5. Commutative endomorphism rings. In [10] Vasconcelos conjectured

that the ring of endomorphisms End^(2l) is commutative for all ideals 31

if and only if A is 1-Gorenstein. This is proved in the following:
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5.1. Theorem. The ring A is n-Gorenstein if and only if: For each ideal

% in A and each A-regular sequence ax,---,aie% with §<i<.n the ring of

endomorphisms EndA^&l(ax, • • • , a,)) is commutative.

Proof. By [6, Theorem 3.15] it is enough to prove that A is 1-Goren-

stein if and only if End(2í) is commutative for all 31, and this will follow

from:

5.2. Lemma. Let M be a nonzero A-module. Then the following are

equivalent:

(1) EndA(N) is commutative for all submodules N of M.

(2) Ass(Af) is without embedded primes and Mp has simple socle over

Apfor all p e Ass(M).

Proof. (1) implies (2). Let Nx and N2 be submodules of M such that

NxnN2=0. Since End^©^) is commutative it is easy to see

rlomf^!, N2)=0. This shows that for all distinct associated primes p and

q (of M) we have Hom(^l/p, Ajq)=0 and hence p cannot be contained

in q. Let S be the (nonzero) socle of the (artinian) Ap-modu\e Mp. Then

End^p(S) is commutative and (as above) we conclude that S is indecom-

posable, i.e. S is simple.

(2) implies (1). Let Ass(A/) = {p,, ■ • • , pr}. Then £(M)=£04/p,)©- • •©

E(A/pr) by the last part of our assumption (2). End(£(,4/p)) is com-

mutative, since it is ring-isomorphic to the p/4p-adic completion of Ap

(cf. [7, Theorem 3.7]). By the first part of our assumption

Hom(£(,4/p¿), £(¿/p,)) = 0   for M/

It is now justified that End(£(M)) is commutative. Now let N be any

submodule of M. Since every endomorphism of N can be extended to an

endomorphism of E(M) we conclude that End(A?) is commutative.

6. Embedding of modules over n-Gorenstein rings. After some modifi-

cations of the proof of Theorem 2 in [5] it is possible to prove:

6.1. Theorem. Let A be a homomorphic image of a Gorenstein ring.

Then A is n-Gorenstein if and only if A is (Sn) and eachf.g. module M such

that gr(p)<« for all p e Ass(M) is embeddable in a f.g. module of finite

projective dimension.

It would be nice to avoid the condition that A is (S„) ; if the embedda-

bility-condition holds A satisfies at least: depth Ap^.inf(n, ht(p)—1) by

Proposition 3.3.

Added in proof. Theorem 5.1 has already been proved in the main

case n=l by S. Alamelu, Proc. Amer. Math. Soc. 37 (1973), 29-31.
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