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A LIFTING THEOREM FOR FORMAL POWER SERIES
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Abstract. We define a class of operations on formal power

series that includes practically all operations of interest. The class

is closed under composition. We prove that an operation in this class

vanishes for complex numbers if and only if it vanishes for functions

analytic at the origin. A variety of applications of this "lifting

theorem" are discussed.

1. Introduction.   When   students   are   uneasy   about   manipulating

generating functions formally, they may be told something like:

Convergence doesn't matter if you're careful—most results involving

convergent power series are true for formal power series because

purely "algebraic" proofs can be given. Algebraic proofs for some

of the basic properties of formal power series can be found in the

papers by Niven [5] and Klarner [4].

In this paper, we present the basic idea behind what we consider to be a

more satisfying approach: a lifting theorem is proved which implies that

most identities for analytic functions hold for formal power series over

any field containing the complex numbers. We illustrate the theorem by

lifting a variety of results to formal power series; for example, basic

arithmetic properties, elementary functions, Lagrange inversion, and

roots of equations.

An identity can be thought of as a statement that some "operation"

is identically zero. An operation is simply a map from formal power

series to formal power series. We require that an operation possess two

basic properties. Roughly speaking these are :

(A) The domain of definition of the operation <p and the coefficients of

the value of <p are rational functions of the coefficients of the arguments

of q> (called C-rational).

(B) Functions analytic at the origin are mapped by <p into functions

analytic at the origin when Taylor series are used to interpret <p for such

functions (called ^-analytic).

These definitions will be stated precisely in the next section. The basic

results are roughly:
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1. (Lifting Theorem). A C-rational (9-analytic operation vanishes

for all formal power series over afield containing the complex numbers if

and only if it vanishes for all polynomial functions.

II. (Composition Theorem). The properties of being C-rational and

6-analytic are preserved under composition of operations.

2. Definitions. It is useful in some combinatorial applications to allow

an infinite number of variables. It is also helpful to allow fields of the

form C(xlt x2, • ■ •) where C is the complex numbers and xlt x2, • • • are

indeterminates. Consequently, we give the following general definition.

Definition 1. Let F2C be a field, let m be a cardinal, and let JV=

{0, 1, 2, 3, • • •}. A formal power series in w variables over F is a map/

from the "subdirect product" JVIo>] to F. (The subdirect product N1^ con-

sists of all co-long vectors over N containing only a finite number of non-

zero entries.)   □

We use the usual terminology and notation for the formal power series

/: the value of/at n is/, and is called a coefficient of the formal power

series 2/» *"> where the summation has only formal significance. (Bold

face type indicates vectors.) We depart from the usual notation and

denote the set of all formal power series in a> variables over F by (F, <a).

It is possible to skip to §4 now and see some typical applications. The

discussion (but not the proofs) can be followed without going into the

technicalities of §§2 and 3.

Definition 2. A function p from Fk to F is a C-polynomial if it is a

polynomial in its arguments with coefficients in C. A C-rational function

is a quotient of two C-polynomials.    D

Definition 3. Let ¥ and &" be finite sets. A map <p from 2i^si=

®s€5» (Fj Os) mt0 -K=®(€^- (jf> <°t) is called a C-rational operation provided

(i) every coefficient of every component of the value of 99 is a C-

rational function of some of the coefficients of the argument of <p and

(ii) 3l^ is the intersection of a finite number of sets of the form

{fej</:p=0} and {fes^.p^O} where p is a C-polynomial evaluated

at certain coefficients of the components of/. Possibly 3)^=^.    □

Definition 4. A function from C to C is called analytic at 0 provided

it depends on only a finite number of its arguments and has a power

series expansion about 0.    □ ■

The set of germs of all functions from Ca to C analytic at 0 is written

<Pa. By an abuse of terminology we refer to germs of functions as functions.

The Taylor series map A.:Oa-*(C, co) is defined in the usual way by

(Aa-/.-(n-S(^)V)u
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It is well known in classical analysis that A is an injection and that for

sufficiently small z

na*0

where the sum is over all n e JVtm] such that/a?íO.

Definition 5. Let 3Sa be a subset of 0a. A map gs:^->Ä is called a

âS-analytic operation if

\sesr 7       u&- '

If <p is á?-analytic, then A-1ç>A maps 38 n(A-1^) into G. By an abuse of

terminology we say that <p maps^n(A-1^) into O.

Although ©-analytic C-rational operations are a small subset of the

possible operations on formal power series, they include practically all

operations of interest in enumeration.

3. The lifting and composition theorems.

Theorem 1 (Lifting Theorem). Let 0> denote the polynomials over C.

If <p is a C-rational ^-analytic operation which vanishes identically on the

analytic functions (A-1^9)n^, then q> vanishes identically on 9>v.

Proof. Since the assertion that <p vanishes identically is stronger for

larger fields, we can assume without loss of generality that F is alge-

braically closed. Let the domain ¡¿^ be determined by the vanishing

of the C-polynomials^j and the nonvanishing of the C-polynomials^,. Let

a coefficient of a formal power series in the range of <p be given by the

ratio of the C-polynomials r and s. It suffices to prove that

(1) (V/p, = 0) A V,.^. ft 0)) => (r/s = 0)

where the arguments of p¿, q¡, r and s run over all elements of F. The

right-hand side of (1) means r=0 and s^O. We can rewrite (1) as the

conjunction of the two statements

(2a) <y¿Pi = 0))=>(rr[4i = o),

(2b) ((s = 0) A V¿p< = 0)) => (n 9, = o) •

Thus statements (2) are equivalent to the vanishing of <p for power series

over F. By the Hubert Nullstellensatz [8, p. 164] equation (2a) is

equivalent to the assertation that some power of r Y\ q¡ is in the ideal
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generated by the/>¡ in the ring of polynomials over F. Since r, q}, and/>¿ are

C-polynomials, this happens over F if and only if it happens over C.

A similar argument applies to (2b). Hence y vanishes identically for

formal power series over F if and only if (1) holds over C.

There exists an element of A# with any finite collection of coefficients

specified arbitrarily. Hence (1) holds for formal power series over C if

and only if it holds for polynomials over C. Since <p vanishes on (A-1^) n

3*, we are done.    □

Remarks. The assumption that q> is ^-analytic is included in the

theorem because it provides the link between classical analysis and

formal power series. The requirement that F^C is unnecessary: it is

sufficient to require that F have characteristic zero and <p make sense for

formal power series over F.

Theorem 2 (Composition Theorem). The composition of G-analytic

operations is G-analytic. The composition of C-rational operations is

C-rational.    □

Proof.   This follows easily from the definitions.

4. Applications. A C-rational ^-analytic operation which yields the

same result as its analytic namesake when applied to Taylor series will be

called well behaved. The theorems imply that (i) a well-behaved operation

<p vanishes on 2V if and only if its namesake vanishes for polynomial

functions and (ii) the composition of well-behaved operations is well

behaved.

Except for division and substitution, the basic operations on formal

power series are easily defined :

Œ>a) + (2 g-*") - 2 (/.+ritt,
(2/.**X2 *-*") - 2 K*.

¿-2*-*"-2 »«/-*""*•
etc., where ex is zero everywhere except for the ath component, which is 1,

and Aa=£/*£,,_*, the sum extending over all k such that kß^nß for all ß.

These are well-behaved operations.

To illustrate the ideas we begin with a trivial example: the formal

power series over F form a commutative ring with identity. Since "com-

mutative ring with identity" can be rephrased as the vanishing of well-

behaved operations, and since C is a commutative ring with identity, the

lifting theorem provides a proof. As an illustration we consider commuta-

tivity in detail. It is equivalent to f(x)g(x)—g(x)f(x)=0. Define the
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operations ip and <p by

rp{a, b) = (a, b, b, a) = (yiu y>2, y>3, y«),

<p{a, b) = (v!V2) - (VzWt)-

("Duplicating" operations like y are quite useful in providing formal

proofs.) Commutativity is equivalent to the assertion that <p=0. Since <p

is the composition of well-behaved operations, it is also well behaved.

Commutativity follows from the lifting theorem. We cannot use this

method to show that formal power series form an integral domain because

the nonexistence of zero divisors cannot be stated as an identity. A

related nonexistence result that cannot be directly lifted is the theorem that

the number of solutions of an algebraic equation over an integral domain

does not exceed the degree of the equation. Another sort of nonexistence

result deals with general solutions of differential equations and is dis-

cussed at the end of this section.

Before discussing division it is convenient to consider substitution.

Since the most general definition of substitution is not C-analytic, we will

give a useful restricted definition. Let xx, x2, ■ • • , xk be a. finite number of

indeterminates. Let/, g1, • ■ • , gk be formal power series over F such that

the coefficient of x° in g¡ is 0 for 1 ̂ i^k. We can then define the substitu-

tion of xl=g1, • • ■ , xk=gk into/. It is just the formula one obtains by

substituting formally, expanding and collecting terms. Since this definition

gives a well-behaved operation, the lifting theorem can be used in situations

where substitution occurs. For example, substitution is a homomorphism

for a ring of formal power series because it is a homomorphism for a ring

of analytic functions.

One of the simplest examples of substitution is provided by the recip-

rocal. When/n^O define

l//W=/-V(l-/W//o)

where r(x)=l+x+x2+x3+- ■ ■ . This corresponds to the usual notion

of reciprocal for analytic functions since r(z)=1/(1 —z). All the usual

properties of division follow from the lifting theorem.

We now turn to some less trivial applications.

By substituting into the Taylor series expansions for the elementary

functions we can define these functions for formal power series. All of the

traditional identities follow; for example, whenever/0=0 and g0=0

enx)+s(x) _ g/Mgid)

and

(i+mrx) = 2(h{x))f(xy
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where

(h^ - h(x)(h(x) - 1) • • • (h(x) + 1 - n)ln\

and

(1 + /(*))ft(l) = exp{ft(*)Iog(l + /(*))}.

Let/and g be n long vectors of formal power series in n indeterminates.

If one writes out the formula for the nth coefficient of g(f(x)) and sets it

equal to ô0n, the Kronecker delta, it is easy to see that computing the

inverse g=fi~1) of the formal power series f(x) is a well-behaved opera-

tion whenever f0=0 and the determinant ||(9/"</3jci)0|| is nonzero. See

Bochner and Martin [1, p. 9] for details. Hence the properties of func-

tional inversion can be lifted from the theory of analytic functions. The

classical Lagrange inversion theorem for functions of a single variable

asserts [7, p. 133]:

Iff{z) is analytic at 0,/0=0, andf^O, then for sufficiently small z

g(fl-l))(z) = g(0) + 2 (^)n~\gX«)(«//(«))")Uz>!-

We have seen that functional inversion, functional composition, differ-

entiation and multiplication are well-behaved operations. The operation

|J=0 defined by (f\x=0)n=fo^on ¡s clearly a well-behaved operation. What

about u\f(u)1 Since/0=0, the reciprocal of/is not defined. On the other

hand, we can take the reciprocal of the formal power series h defined by

A„=/n+1. This is a well-behaved operation corresponding to l/(/(z)/z).

Finally, the infinite sum can be viewed simply as a notation for a formal

power series. Since both sides of the Lagrange inversion formula can be

interpreted as well-behaved operations, the formula is valid for formal

power series. An algebraic proof is given by Henrici [3] and a combina-

torial proof by Raney [6]. The multivariate form of Lagrange inversion

(Good [2, Theorem 12]) can also be lifted.

Formulas for solutions of equations can often be interpreted as well-

behaved operations to which the lifting theorem can be applied. In general

it is not true that all solutions are obtained in this way. The following

examples illustrate some problems :

(i) The algebraic equation f2=x has no formal power series solution.

(ii) The formal power series g(x)=2,(n—l)\ xn satisfies the differ-

ential equation x2g'=g—x. The analytic solution

involves a function which is not analytic at 0.



22 E. A. BENDER

We will consider ordinary differential equations in a bit more detail.

It is easy to provide arbitrary constants: use the operation |I=0 defined

previously. To prove that a lifted solution is the general solution it suffices

to show that (i) the m arbitrary constants allow the first m coefficients

of the solution to be specified arbitrarily and (ii) the remaining coefficients

are determined recursively by the differential equation. If the equation

can be put in the formy<m>=h(x, y, y', y", • • • , 7(m-1)) then the argument

for analytic functions (i.e., equate coefficients of xn) can be used.

To illustrate these ideas we consider the general solution of the equation

g'(x)=g(x)c'(x) which arises in the enumeration of labeled graphs. The

field of coefficients for g(x) and c(x) is C(atx, x2, • • •). The general solu-

tion for analytic functions is g(x)=ec(x)+k where k is an arbitrary constant.

In general this cannot be lifted because we have only defined the exponen-

tial function for power series without a constant term. Therefore we

rewrite the solution in the form g(x)=Kee^~c<> where K is an arbitrary

constant. This can be lifted to formal power series. Note that g0 is com-

pletely arbitrary. Since this is precisely what is needed for a general

solution, this solution is general.

5. The quotient field. It is sometimes useful to deal with the quotient

field of the ring of formal power series over F. The above results can be

carried over to this situation by replacing references to 6 by references to

functions with finite poles at 0, references to 0* by references to functions

with finite Laurent expansion's about 0, and the phrase "is analytic

(at 0)" by the phrase "is analytic or has a pole (at 0)."
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