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ON TORSION ABELIAN GROUPS QUASI-PROJECTIVE
OVER THEIR ENDOMORPHISM RINGS

LASZLO FUCHS1

Abstract. It is shown that a torsion abelian group is quasi-

projective over its endomorphism ring exactly if, for every prime p,

its /»-component is bounded or has an unbounded basic subgroup.

Recently, a number of papers have dealt with the behavior of abelian

groups A regarded as modules over their endomorphism rings E(A)=E.

For instance, Richman and Walker [3] have shown that an abelian /»-

group is flat as an £-module if and only if it is either bounded or has an

unbounded basic subgroup. In another paper [4], they described all

abelian groups which are injective as modules over their endomorphism

rings. Poole and Reid [1] raised the question of abelian groups quasi-

injective over their endomorphism rings; they have shown that all un-

mixed divisible groups and direct sums of finite cyclic groups share this

property. Subsequently, Richman [2] proved that the class of/»-groups,

quasi-injective over their respective endomorphism rings, is fairly large:

it includes all /»-groups without elements of infinite height, the totally

protective /»-groups and all nonreduced /»-groups.

In this note, we wish to raise the dual question: Which abelian groups

are quasi-projective over their endomorphism rings? This question can be

fully answered for torsion groups by the following simple result.

Theorem.2 A torsion abelian group is quasi-projective as a module

over the ring of its endomorphisms if and only if , for every prime p, its

p-component is either bounded or has an unbounded basic subgroup.

It is a routine exercise to show that it suffices to consider /»-groups A.

Suppose that A is a /»-group as stated, G is an 2>submodule of A (i.e.

a fully invariant subgroup of A) and <p:A-+A\G is the natural homomorph-

ism. What we have to prove is that for every is-homomorphism a : A-+A/G,
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there exists an endomorphism X of A making the diagram

A

A-     v       .    Air<

commutative. The hypothesis of a being an F-map is equivalent to saying

that, for every r¡eE,

(1) fja. = xr¡

where fj denotes the map A¡G-^A¡G induced by r¡, i.e. f¡{a+G)=r¡a+G

for a e A.

Let (a) be a summand, of order pn, oí A, and write A={a)®C. Then the

full invariance of G implies G=((a) C\G)(B(Cr*G), and hence we get a

direct decomposition

A\G = ({a) + G)IG © (C + G)¡G.

Let r¡ be the endomorphism of A which is multiplication by an integer t

on C and which satisfies r¡a=a+x where x is some element in C[pn]. We

can write

eta = kâ + c
I

where bars indicate cosets mod G, c g C and k is an integer. Since fjä=

ä+x, f¡c=tc, from (1) we deduce that

rjaa = rj(kâ + c) = kä + kx + tc,

a.r¡a = a(a + x) = kä + c + cue

are equal, for every r. Therefore c=0, a.a=kä and

(2) ocx = kx   for all x e A [pn].

Suppose that A has a summand (b) of order >/>". Then we get similarly

txx=k'x for some integer k' and for all x e A[o(b)], thus k=k' mod o(a).

It is now easy to conclude that if A has an unbounded basic subgroup,

then there is ap-adic integer n such that clx=ttx for all x e A. Consequently,

if we choose X in the diagram to be the multiplication by this 77, then the

arising triangle will commute.

If A is a bounded /»-group and if (a) is a cyclic summand of maximal

order, then (2) shows that X can be chosen as a multiplication by k.

(Bounded /»-groups are actually projective as F-modules; see Richman

and Walker [3].)

In the remaining case, A is of the form A=B®D where B is bounded

(say, /»m-15=0) and D is divisible ¿¿0. Let G=A[pm] and select an E-

homomorphism v.:A-+A\G such that ai?=0 and x\D is monic. This
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can be done, for instance, by first writing  !>=©¿ejl>¿  with  Z)~

(cn, ■■■ , cin, ■ ■ ■)^Z(pco), pcn=0, pciin+1=cin (n^l), and then setting

oLCin—cin+m. For such an a, there is no X:A-*-A with <£A=a, since

a.D[pm]7¿Q, but <f>XD[pm] must vanish. This completes the proof.

In view of [3], we conclude:

Corollary. A torsion group is quasi-projective over its endomorphism

ring E exactly if it is aflat E-module.

The above method can be suitably generalized to describe the alge-

braically compact and cotorsion groups which are quasi-projective over

their endomorphism rings (see a forthcoming paper by A. Longtin).
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