THE H_p -PROBLEM FOR GROUPS WITH CERTAIN CENTRAL FACTORS CYCLIC

JOSEPH A. GALLIAN

ABSTRACT. Let G be a group and Hp(G) the subgroup generated by the elements of G of order different from p. Hughes conjectured that if G>Hp(G)>1, then |G:Hp(G)|=p. In this paper it is shown that if G is a finite p-group and certain central factors of G are cyclic or if the normal subgroups of G of a certain order are two generated, then the Hughes conjecture is true for G.

- 1. Introduction. Let G be a group and $H_p(G)$ the subgroup of G generated by the elements of order different from p. Hughes [6] conjectured that if $G > H_p(G) > 1$, then $|G:H_p(G)| = p$. Although Wall [11] has shown the conjecture is false for p=5, the conjecture is true in the following cases: p=2 [5], p=3 [10], regular p-groups [4], finite groups which are not p-groups [7], finite metabelian p-groups [4] (see also [9, p. 42]), finite p-groups with class at most 2p-2 [9], finite p-groups with the property that every 3-generated subgroup has class at most p [3] and finite p-groups with cyclic lower central factors [4]. In this paper it is shown that if G is a finite p-group and certain central factors of G are cyclic or if the normal subgroups of G of a certain order are two generated, then the Hughes conjecture is true for G.
- 2. Notation. If G is a group of nilpotence class c we use $G=L_1(G)>L_2(G)>\cdots>L_{c+1}(G)=1$ to denote the lower central series of G and $1=Z_0(G)< Z_1(G)<\cdots< Z_c(G)=G$ to denote the upper central series of G. The exponent of G is denoted by $\exp(G)$ and we say G is an ECF-group if $G/L_2(G)$ has exponent p and $L_i(G)/L_{i+1}(G)$ is cyclic for all $i\geq 2$.
- 3. THEOREM 1. Let G be a finite p-group of class c>p>2 with $H_p(G)\neq 1$ and $L_i(G)/L_{i+1}(G)$ cyclic for $i=2, \dots, p$. Then $|G:H_p(G)|\leq p$.

PROOF. Assume G satisfies the hypothesis of the theorem and has minimum order such that $|G:H_p(G)|>p$. Let y belong to $H_p(G)$ with |y|>p. Then for any element z of order p in $L_c(G)=L_c$ we have $(yz)^p\neq 1$

Received by the editors January 31, 1973 and, in revised form, April 5, 1973. AMS (MOS) subject classifications (1970). Primary 20D15, 20D25.

Key words and phrases. Finite p-groups, H_2 -problem, Hughes problem, central series of a finite p-group.

so that yz belongs to $H_p(G)$ and it follows that $L_c \leq H_p(G)$. Thus $H_p(G/L_c) \leq H_p(G)/L_c$ and $|G/L_c: H_p(G/L_c)| \geq |G: H_p(G)| > p$. Since $L_i(G/L_c)/L_{i+1}(G/L_c)$ is isomorphic to $L_i(G)/L_{i+1}(G)$ for $i=2, \dots, p, G/L_c$ satisfies the latter portion of the hypothesis. By the result of Macdonald [9] we may assume c > 2p-2 so that c-1 > p. It follows that $H_p(G/L_c)=1$ and $\exp(G/L_c)=p$. Since

$$p = \exp(G/L_c) \ge \exp(L_i(G)/L_{i+1}(G))$$

for $i=2, \dots, c$, we have $|L_i(G)|L_{i+1}(G)|=p$ for $i=2, \dots, p$ and a theorem of Blackburn [1, p. 74] yields $|L_i(G)|L_{i+1}(G)|=p$ for $i=2, \dots, c$. There are now several ways to arrive at a contradiction. One is directly obtained by applying the result of Hogan and Kappe [4] mentioned in the introduction. Other ways to obtain a contradiction are to use Corollary 1 in [1, p. 69] or to apply Lemma 2 in [4] to G/L_e together with the theorem of Macdonald [9].

THEOREM 2. Let G be a finite p-group of class c>p>2 with $H_p(G)\neq 1$ and $Z_{i+1}(G)/Z_i(G)$ cyclic for $i=p-2, \dots, c-2$. Then $|G:H_p(G)|\leq p$.

PROOF. Assume G satisfies the hypothesis of the theorem and has minimum order such that $|G:H_p(G)|>p$. As in the proof of Theorem 1, we have $|G/Z_1:H_p(G/Z_1)|>p$. Since $Z_{i+1}(G/Z_1)/Z_i(G/Z_1)$ is isomorphic to $Z_{i+2}(G)/Z_{i+1}(G)$ for $i=1,\cdots,c-3$ and G/Z_1 has class c-1, G/Z_1 satisfies the latter portion of the hypothesis. As in the proof of Theorem 1 we may assume $H_p(G/Z_1)=1$ and therefore $\exp(G/Z_1)=p$. Since

$$p = \exp(G/Z_1) \ge \exp(Z_{i+1}(G)/Z_i(G))$$
 for $i = 1, 2, \dots, c-2$,

we have $|Z_{i+1}(G)/Z_i(G)| = p$ for $i = p-2, \dots, c-2$. We let $Z_{p-2}(G) = Z_{p-2}$ and consider G/Z_{p-2} . Since $Z_i(G/Z_{p-2}) = Z_{p-2+i}(G)/Z_{p-2}(G)$ it follows that $|Z_{i+1}(G/Z_{p-2})/Z_i(G/Z_{p-2})| = p$ for $i = 0, \dots, c-p$. Thus

$$L_i(G/Z_{n-2}) = Z_{n-n+3-i}(G/Z_{n-2})$$
 for $i = 1, \dots, c-p+3$

and therefore G/\mathbb{Z}_{p-2} is an *ECF*-group of exponent p and class c-p+2. Since Hogan and Kappe [4] have shown that an *ECF*-group of exponent p has class at most p, it follows that $c \leq 2p-2$ and the result of Macdonald [9] gives a contradiction.

We remark that the restriction that c>p>2 in Theorems 1 and 2 is merely a technicality in view of the results mentioned in the introduction.

THEOREM 3. Suppose $|G| = p^n$ with $H_p(G) \neq 1$ and that for some fixed r with $3 \leq r \leq n-1$ every normal subgroup of order p^r has two generators Then $|G: H_p(G)| \leq p$.

- PROOF. Case 1. r=n-1. Assume G satisfies the hypothesis of the theorem and has minimum order such that $|G:H_p(G)|>p$. Let c denote the class of G and let N be a subgroup of $L_c(G)$ of order p. Clearly we may assume $n \ge 6$. Since every normal subgroup of G/N of order p^{n-2} has two generators, it follows that $\exp(G/N)=p$ and therefore $P_1(G)=\langle g^p|g\in G\rangle\le N\le L_c(G)$. By the results mentioned in the introduction we may assume that c>p>2. From a theorem of Blackburn [2, p. 19] we see that G is either metacyclic or $P_1(G)=L_3(G)$ and in either instance we clearly have a contradiction.
- Case 2. $3 \le r \le n-2$. The known results imply that we may assume $c \ge p \ge 5$ and $n \ge 5$. According to a theorem of Blackburn [2, p. 16] one of the following is true:
 - (i) G is metacyclic,
 - (ii) G is a 3-group of maximal class,
- (iii) the elements of G of order at most p form a normal subgroup E of order p^3 and G/E is cyclic.

Clearly we need only discuss case (iii). Since $|E|=p^3$ implies $E \le Z_3(G) \le Z_{c-1}(G)$ [8, p. 301], it follows that G/Z_{c-1} is cyclic. But G/Z_{c-1} is cyclic only when G is cyclic. This contradiction completes the proof.

REFERENCES

- 1. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92. MR 21 #1349.
- 2. ——, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22. MR 23 #A208.
- 3. G. T. Hogan, Elements of maximal order in finite p-groups, Proc. Amer. Math. Soc. 32 (1972), 37-41. MR 44 #6833.
- 4. G. T. Hogan and W. P. Kappe, On the H_p -problem for finite p-groups, Proc. Amer. Math. Soc. 20 (1969), 450-454. MR 39 #312.
- 5. D. R. Hughes, Partial difference sets, Amer. J. Math. 78 (1956), 650-674. MR 18 #921.
 - 6. ——, A problem in group theory, Bull. Amer. Math. Soc. 63 (1957), 209.
- 7. D. R. Hughes and J. G. Thompson, The H_p-problem and the structure of H_p-groups, Pacific J. Math. 9 (1959), 1097-1101. MR 21 #7248.
- 8. B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302.
- 9. I. D. Macdonald, Solution of the Hughes problem for finite p-groups of class 2p-2, Proc. Amer. Math. Soc. 27 (1971), 39-42. MR 42 #6113.
- 10. E. G. Strauss and G. Szekeres, On a problem of D. R. Hughes, Proc. Amer. Math. Soc. 9 (1958), 157-158. MR 20 #73.
- 11. G. E. Wall, On Hughes' H_p-problem, Proc. Internat. Conference Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, pp. 357-362. MR 36 #2686.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, DULUTH, MINNESOTA 55812