
proceedings of the
american mathematical society
Volume 42, Number 1, January 1974

FIXED POINTS OF CERTAIN SELF MAPS
ON AN INTERVAL

CHI SONG WONG1

Abstract.   Let T be a self map on a bounded interval [a, b]

with a, be T([a,b]). Suppose that for any x,y in [a, b],

\T(x) - T(y)\ < i(\x - T(x)\ + \y- T(y)\).

It is shown without the continuity of T that the midpoint of

[a, ¿>] is a fixed point of T. A nontrivial example is given.

1. Main theorem.

Theorem. Let T be a self map on a bounded closed interval [a, b]

with a, b e T([a, b]). Suppose that for all x, y in [a, b],

(1) \T(x) - T(y)\ < (\x - T(x)\ + \y - T(y)\)¡2.

Then the midpoint of [a, b] is the unique fixed point of T.

Proof. Since ¿—a is uniquely maximal for \x— y\, T(a)=band T(b)=a.

Let c be the midpoint (a+b)/2 of [a, b]. Then \T(b)-T(c)\ and

\T(a)-T(c)\ are each equal to \a—c\ = \b-c\ = (b-a)¡2. Hence T(c)=c.

From (1), c is the unique fixed point of T.

We note here that if T is a continuous self map on a bounded closed

interval Y=[a, b] which satisfies (1), then X=f)U T*(Y) is nonempty,

compact and connected, and T(X)=X; hence the midpoint of A' is a

fixed point of T. Comparing this result with that of R. L. Franks and

R. P. Marzec [1], we remark here that for any x in Y and for any t in

(0, 1), {Tt(x)} converges to a fixed point of T, where Tt(z)=(l -t)z+tT(z)

for all z in Y. This result was proved in [2] with a much more general

setting.

2. Examples. Let F be a function on a bounded interval X into the

real line. T is nonexpanding at x in X if \T(x) — T(y)\^\x—y\ for all

y in X. T is nonexpanding if it is nonexpanding at every point in X. If
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T satisfies the conditions of our main theorem, then T is nonexpanding

at x=(a+b)¡2 and for all x in [a,b], \T2(x)-T(x)\^\T(x)-x\. These

are key points in constructing examples.

Example 1.    Let 7" be the self map on [0, 1] defined by

7X0) = 1,    T({) = 0,    T(x) = J,   for all x in (0, 1).

Then Jis nonexpanding only at x=£ and satisfies the conditions of our

main theorem. Although 7" is not nonexpanding at any x in (0, 1) other

than £, T, restricted to (0,1), is a nonexpanding self map on (0, 1).

When T is required to be continuous, the example cannot be so trivial.

Indeed, if J is a continuous self map on [0, 1] and if 0,1 g T([0, {]),

then by connectedness of T([0, 1]), T([0, 1])=[0, 1].

Example 2.   Let T be the self map on [0, 1] defined by

T(x) = 1 - 2x + 2x2   if x ^ \,

T(x) = 2x({-x) ifx>§.

Then: (a) T is a bijective continuous self map on [0, 1] and therefore

is a homeomorphism of [0, 1] onto [0, 1]. (b) 7" is differentiable on (0, 1)

and |7"(x)|^l for all x in [\,\]. So by the mean value theorem,

\T(x)—T(y)\^\x—y\ for all x,y in [\, f]. However.T is nonexpanding

only at x=\ and T, restricted to [\, f], is nonexpanding but is not a self

map on (¿, f]. (c) T satisfies the conditions of our main theorem, (d) Let

i G (0, \). Let Tt be the self map on [0, 1] defined by

Tt(z) = (1 - t)z + tT(z),      ze[0,{).

Then x=J is a fixed point of Tt. However, Tt does not satisfy the condition

(1) in our main theorem:

\Tt(0) - Tt(\)\ = \~t

and

(|0 - Tt(0)\ + \i- rt(è)|)/2 = t\2 < i - t.

The above argument and therefore conclusions hold for any T which

satisfies the conditions of our main theorem with a=0 and b={.
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