ON THE MARX CONJECTURE FOR THE CONVEX HULLS OF FAMILIES OF STARLIKE AND CONVEX MAPPINGS

DAVID J. HALLENBECK

ABSTRACT. We prove a Marx conjecture for the closed convex hull of the family of functions which are starlike of order α and k-fold symmetric. We obtain precise results for the functions which are starlike, starlike of order $\frac{1}{2}$, and starlike with 2-fold symmetry in their power series expansions.

Introduction. Let Δ denote the unit disk $\{z:|z|<1\}$ and let A denote the set of functions analytic in Δ . When A is given the topology of uniform convergence on compact subsets of Δ it is known [9, p. 150] to be a locally convex linear topological space. We recall the definition of subordination between two functions f and g analytic in Δ . We say f is subordinate to g, denoted f < g, if there exists an analytic function $\phi(z)$ so that $\phi(0)=0$, $|\phi(z)|<1$, and $f(z)=g(\phi(z))$ for z in Δ . We let X denote the unit circle $\{x:|x|=1\}$ and \mathcal{P} denote the set of probability measures on X.

We consider the class of functions denoted by $St_k(\alpha)$ which are k-fold symmetric and starlike of order α . We recall that f(z) is in $St_k(\alpha)$ if and only if

$$f(z) = \sum_{m=0}^{\infty} a_{mk+1} z^{mk+1}$$
 and $\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha$

where $\alpha < 1$, $k = 1, 2, \dots$, and z is in Δ . The functions $St_1(\alpha)$ were introduced in [7] by M. S. Robertson.

In [1] L. Brickman, D. J. Hallenbeck, T. H. MacGregor and D. R. Wilken determined the closed convex hull of $St_k(\alpha)$ denoted by $\mathscr{H} St_k(\alpha)$ to be the set of functions

$$\left\{ f: f(z) = \int_X \frac{z}{(1 - xz^k)^{(2-2\alpha)/k}} \, d\mu(x) \text{ and } \mu \in \mathscr{P} \right\}.$$

In 1932 in [4, p. 66] A. Marx conjectured that if $f \in St_1(0)$ then the range of $f'(z) \subset$ range of $(z/(1-z)^2)'$ for all z in Δ . In [3] J. A. Hummel

Received by the editors March 7, 1973.

AMS (MOS) subject classifications (1970). Primary 30A32.

Key words and phrases. Starlike of order α , k-fold symmetric, convex, Marx conjecture, subordination.

proved this conjecture to be false. In [5] R. McLaughlin proved that if $f \in \operatorname{St}_1(\alpha)$ then there exists a radius denoted by $r(\alpha)$ so that $0 < r(\alpha) \le 1$ and the range of f'(z) is contained in the range of $[z/(1-z)^{2-2\alpha}]'$ for $|z| < r(\alpha)$. The numbers $r(\alpha)$ were computed as the roots of a certain polynomial.

In Theorem (1) we prove that if $f \in \mathcal{H}$ $\operatorname{St}_k(\alpha)$ then there exists a radius denoted by $r(\alpha, k)$ such that $0 < r(\alpha, k) \le 1$ and the range of f'(z) is contained in the range of $[z/(1-z^k)^{(2-2\alpha)/k}]'$ for $|z| \le r(\alpha, k)$. For some special cases of interest, we compute the exact value of $r(\alpha, k)$. We also consider the class of univalent convex mappings denoted by K.

1. The Marx conjecture for \mathscr{H} St_k(α).

THEOREM (1). If $f \in \mathcal{H} \operatorname{St}_k(\alpha)$, then there exists a positive number denoted by $r(\alpha, k)$ such that the range of f'(z) lies in the range of $[z/(1-z^k)^{(2-2\alpha)/k}]'$ for $|z| \leq r(\alpha, k)$. The result is sharp.

PROOF. It was proven in [1] that when $f \in \mathcal{H}$ $St_k(\alpha)$ then

$$f(z) = \int_{X} \frac{z}{(1 - xz^{k})^{(2-2\alpha)/k}} d\mu(x)$$

for some $\mu \in \mathscr{P}$. We see by a short computation that

$$f'(z) = \int_X \left[\frac{z}{(1 - xz^k)^{(2-2\alpha)/k}} \right]' d\mu(x) = \int_X p'(xz) \, d\mu(x)$$

where $p(z)=z/(1-z^k)^{(2-2\alpha)/k}$. We will prove that p'(z) has a positive radius of convexity denoted by $r(\alpha, k)$. The range containment will then follow, since the integral can be approximated by sums of the form

$$\sum_{i=1}^{n} \lambda_i \left[\frac{z}{(1-x_i z^k)^{(2-2\alpha)/k}} \right]'$$

where $\lambda_i \ge 0$ and $\sum_{i=1}^n \lambda_i = 1$. Since $p(z) = z + \cdots$ satisfies the normalizations p(0) = 0 and p'(0) = 1, it is easy to verify that p'(z) has a positive radius of convexity which we denote by $r(\alpha, k)$.

Suppose that $|z| > r(\alpha, k)$. The radius of univalence of p(z) is strictly larger than $r(\alpha, k)$. Therefore, there exist two distinct points $re^{i\theta_1}$ and $re^{i\theta_2}$ where |z| = r so that

$$w = \frac{1}{2} \left[\frac{re^{i\theta_1}}{(1 - xr^k e^{ki\theta_1})^{(2-2\alpha)/k}} \right]' + \frac{1}{2} \left[\frac{re^{i\theta_2}}{(1 - xr^k e^{ki\theta_2})^{(2-2\alpha)/k}} \right]'$$

is not the image of $|z| \le r$ under p'(z). To each number $z = re^{i\theta}$ chosen so that $|z| = r > r(\alpha, k)$ and r is sufficiently close to $r(\alpha, k)$ we may choose μ to be a measure with mass $\frac{1}{2}$ at each of the points $x_1 = e^{i(\theta_1 - \theta)}$ and

 $x_2 = e^{i(\theta_2 - \theta)}$. Then we see that

$$g(z) = \int_X \frac{z}{(1 - xz^k)^{(2 - 2\alpha)/k}} d\mu(x)$$

is in $\mathscr{H} \operatorname{St}_k(\alpha)$ but g'(z) = w is not in the image of $|z| \le r$ under p'(z). Hence, the result is sharp.

REMARKS. (1) Since $\operatorname{St}_k(\alpha) \subset \mathcal{H} \operatorname{St}_k(\alpha)$, it is clear that we have proven a result for the class $\operatorname{St}_k(\alpha)$.

- (2) A more detailed argument shows that $r(\alpha, 1) \rightarrow 1$ as $\alpha \rightarrow 1$ and $r(0, k) \rightarrow 1$ as $k \rightarrow \infty$.
- (3) When k=1 and $\alpha=0$ it is known [8, p. 33] that the radius of convexity of $[z/(1-z)^2]'$ is $2-\sqrt{3}$ and hence $r(0, 1)=2-\sqrt{3}$. So we have a sharp form of the Marx conjecture for \mathscr{H} St₁(0).
- (4) Theorem (3) in [1] contains the result when $\alpha = \frac{1}{2}$ and k = 1 that \mathcal{H} St₁($\frac{1}{2}$) consists exactly of the functions found in [2, p. 94] to be $\mathcal{H}K$. It is easy to compute that $r(\frac{1}{2}, 1) = \frac{1}{2}$. We recall that the Marx conjecture for K [4, p. 62] and St₁($\frac{1}{2}$) [6, p. 278] is known to hold for the full unit disk.

2. The Marx conjecture for \mathcal{H} St₂(0).

LEMMA 1. The function $g(z) = (1+z^2)/(1-z^2)^2 = [z/(1-z^2)]'$ is convex for $|z| \le (4-\sqrt{13})^{1/2}$ and bivalent in all of Δ .

PROOF. Clearly, if $h(z)=(1+z)/(1-z)^2$ is convex and univalent for $|z| \le 4-\sqrt{13}$, then $g(z)=(1+z^2)/(1-z^2)^2$ will be convex and bivalent for $|z| \le (4-\sqrt{13})^{1/2}$. It is an easy matter to prove directly that h(z) is univalent in all of Δ . We know that h(z) is convex and univalent if and only if $\text{Re}[1+zh''(z)/h'(f)] \ge 0$ since $h'(0)\ne 0$. A calculation shows that

$$\operatorname{Re}\left(1 + \frac{zh''(z)}{h'(z)}\right) = \operatorname{Re}\left(\frac{3 + 8z + z^2}{(1 - z)(3 + z)}\right).$$

The last expression is positive if and only if $\text{Re}(3+8z+z^2)(1-\bar{z})(3+\bar{z}) \ge 0$. Let r=|z| and $x=\text{Re }z=r\cos\theta$. The previous condition becomes

$$Re\{9 - 16|z|^2 - |z|^4\} - (6 + 8|z|^2)\bar{z} - 3(\bar{z})^2 + (24 - 2|z|^2) + 3z^2\}$$

= 9 - 16r^2 - .r^4 + 18x - 10r^2x \geq 0.

So, we must decide when $p(x, r) = 9 - 16r^2 - r^4 + 18x - 10r^2x$ is positive. Since $x \ge -r$ we have

$$p(x, r) \ge p(-r, r) = 9 - 18r - 16r^2 + 10r^3 - r^4$$
$$= (r + 1)(r - 3)(-r^2 + 8r - 3) \ge 0$$

when $r \le 4 - \sqrt{13}$ the smallest positive root of p(-r, r).

THEOREM (2). If $f \in \mathcal{H}$ St₂(0), then the range of f'(z) is contained in the range of $[z/(1-z^2)]'$ for $|z| \leq (4-\sqrt{13})^{1/2}$. The result is sharp.

PROOF. Use Lemma 1 and proceed as in the proof of Theorem (1) where $\alpha=0$ and k=2.

REMARKS. This result for \mathscr{H} St₂(0) and of course St₂(0) suggests the conjecture that if $f \in \text{St}_2(0)$ then the range of $f'(z) \subset$ the range of $[z/(1-z^2)]'$ for z in Δ . We note that $r(0,2)=(4-\sqrt{13})^{1/2}$ is approximately 0.63. Recall that for \mathscr{H} St₁($\frac{1}{2}$) we found $r(\frac{1}{2},1)=\frac{1}{2}$ while for the class St₁($\frac{1}{2}$) the result held in the full disk Δ .

3. A Marx-like conjecture for $\mathcal{H}K$.

LEMMA 2. The function $g(z)=z/(1-z)^3$ has a radius of convexity equal to $\frac{1}{8}(7-\sqrt{33})$ and a radius of univalence equal to $\frac{1}{2}$.

PROOF. It is trivial to verify that the radius of univalence of g(z) is $\frac{1}{2}$. The function g(z) is convex and univalent for $|z| \le r$ if and only if

$$\operatorname{Re}\left[1+\frac{zg''(z)}{g'(z)}\right] \ge 0$$

since $g'(0) \neq 0$. A short calculation shows that

$$Re[1 + zg''(z)/g'(z)] = Re[(1 + 7z + 4z^2)/(1 - z)(1 + 2z)].$$

The last expression is positive if and only if

$$Re(1 + 7z + 4z^2)(1 - \bar{z})(1 + 2\bar{z}) \ge 0.$$

Let r=|z| and $x=\text{Re }z=r\cos\theta$. The previous condition becomes

$$Re(1 + (7 + 4r^2)z + 4z^2 + (1 - 14r^2)\bar{z} - 2(\bar{z})^2 + 7r^2 - 8r^4)$$

$$= 1 + (8 - 10r^2)x + 4x^2 + 5r^2 - 8r^4$$

Consider $p(x, r) = 1 + (8 - 10r^2)x + 4x^2 + 5r^2 - 8r^4$. It is easy to verify that

$$\partial p/\partial x = 8 - 10r^2 + 8x \ge 0$$
 for $r \le \frac{1}{2}$ and $x \ge -r$.

Hence, to minimize p(x, r) we may set x = -r. We then have

$$p(-r,r) = 2(1+r)(r-\frac{1}{2})(-1+7r-4r^2)$$

and it is simple to show $p(-r, r) \ge 0$ for $r \le \frac{1}{8}(7 - \sqrt{33})$.

THEOREM (3). If $f \in \mathcal{H}K$, then the range of zf''(z) is contained in the range of z(z/(1-z))'' for $|z| \leq \frac{1}{8}(7-\sqrt{33})$. The result is sharp.

PROOF. As mentioned in remark (4) above, we know that

$$f(z) = \int_X z/(1 - xz) d\mu(x)$$

for μ in \mathscr{P} . Hence $zf''(z) = \int_X 2xz/(1-xz)^3 d\mu(x)$. By Lemma 2 and the type of arguments made in the proof of Theorem (1) the result follows.

REMARKS. (1) This result suggests the problem of finding the largest radius r such that if $f \in K$ then zf''(z) < z(z/(1-z))'' for $|z| \le r$. By the above result $r \ge \frac{1}{8}(7 - \sqrt{33})$.

(2) Since \mathcal{H} St₁($\frac{1}{2}$)= $\mathcal{H}K$ as mentioned in Remark (4) above, we actually have proven Theorem (3) for the classes K and St₁($\frac{1}{2}$).

REFERENCES

- 1. L. Brickman, D. J. Hallenbeck, T. H. MacGregor and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. (to appear).
- 2. L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107. MR 43 #494.
- 3. J. A. Hummel, The Marx conjecture for starlike functions, Michigan Math. J. 19 (3) (1972), 257-266.
- 4. A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67.
- 5. R. McLaughlin, On the Marx conjecture for starlike functions of order α , Trans. Amer. Math. Soc. 142 (1969), 249–256. MR 40 #328.
- 6. J. A. Pfaltzgraff, On the Marx conjecture for a class of close-to-convex functions, Michigan Math. J. 18 (1971), 275-278. MR 44 #421.
- 7. M. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), 374-408
- 8. R. M. Robinson, *Univalent majorants*, Trans. Amer. Math. Soc. **61** (1947), 1–35. MR **8**, 370.
- 9. A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman & Hall, London, 1958. MR 20 #5411.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELAWARE, NEWARK, DELAWARE 19711