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TWO RADIUS OF CONVEXITY PROBLEMS

CARL P.  MCCARTY

Abstract. The sharp radius of convexity of functions with

prescribed second coefficient is found for the two classes: functions

starlike of order a, and functions whose derivative has real part

greater than a.

1. Introduction.   Let   ¿^(a)   denote  the  class   of  functions P(z)=

1+èjZ-l-- • • which are analytic and satisfy Re{P(z)}>a for |z|<l where

a e [0, 1). If £=exp{—largej thenP(£z)=l + |è1|z-|-and we see that

it is no actual restriction to limit our study of ^(a) to functions with a

nonnegative real first coefficient. It is known [2] that |¿,|5Í2(1 —a) and

we define ^„(oc)={P(z) 6 0,(<t):P'{O)=2b{l-a)} for ¿> e [0, 1]. This

paper extends results found in [1] by obtaining a lower bound on

Re{zP'(z)¡P(z)} for P(z) e ^(a) and subsequently applying the results to

obtain a sharp estimate for the radius of convexity of the two classes

y*(a) and ^(a) for each a e [0, 1] and a e [0, 1) where

^;(a) = {F(z) = z + a(l - a)z2 + • • • : F'(z) e 0>a(x)}

and

«??(«) = {/(*) = z + 2a(l - «)z2 + • • • :

Re{z/'(z)//(z)}> a for \z\ < 1}.

The technique used to obtain the results is based on a method of Singh

and Goel [4] and extends some of the results found therein.

2. Preliminaries. Let si denote the class of functions w(z) such that

w(0)=0 which are also analytic and satisfy |w(z)|<l for |z|<l. We will

occasionally use /S=2a—1 to simplify computations and statements of

results.
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Lemma 1.   IfP(z) G &b(«), then \P(z)-Ab\^Dbfor b e [0, 1] where

_ (1 + br)2 - ß(b + r)V D  _ (1 - ß)(b + r)(l + fcr)r

*      (1 -I- 2fcr + r2)(l - r2) ' *       (1 + 2f>r + r2)(l - r2) '

ß = 2a - 1    and   r = |z| < 1.

Proof.   It is known that P(z) e ^b(a) if and only if there exists some

w(z) e sí such that

(1) P(z) = [1 + (1 - 2aMr)l/[l - M>(z)J.

So w(z)=[P(z)-l]/[P(z)+(l-2a)]=6z-f"- -=zç>(z) where <p(z) is

analytic and |<p(z)\ ̂ 1 for \z\ < 1 with q>(0)=b. Now, (ç>(z)-6)/(l -bcp(z))<

z and it follows that g?(z)<(z+6)/(l +6z) and

|w(z)| = \z<p(z)\ Í \z\ (\z\ + b)i(l + b \z\).

Let

|z| + fe 1 + (1 - 2a)z
g(z) =     ,  . , , z   and    T(z) =-;-.

1 + o |z| 1 — z

We note that the image of \z\^r under g(z) is a disk and that T(z) is a

bilinear transformation. The image of |z|^r<l under P(z) is contained

within the image of |z|^r under (To g)(z) which proves the lemma.

Remark 1.    For a fixed re [0, 1), Ab—Db decreases as b increases

over the interval [0, 1] since

l(Ab-Db) = -(l-^-?2<0.
dbK   " " (l+2fcr + r2)2

Lemma 2.   Let P(z) g ^¡,(a), ß=2x-1 g [-1, 1), and k^ 1 ; then for

b g [0, 1]

K)+pfe)-ß l_|z|2|P(z)-/S|2-[P(z)-l|2

P(z)J " (1 - |z|2) |P(z)|

(k + ß) + 2((k + 2)ß + k)br
(2) + ((k + l)(ß + 1)V + 2(k + ß)-(ß- l)2y

_+ 2(kß + (k + 2))ßbr3 + (1 + kß)ßr*

(1 + 2br + r2)(l + (ß + \)br + ßr2)

(3) > 2((1 + fe)(l + ß)A1)1/2 - A1   ifR6^R'

where Ab and Db are as in Lemma 1 with Rb=Ab—Db and

R! = ((1 + ß)All(\ + k)f2.

i(Rb^R'
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Proof.    Let P{z)=Ab+u+iv and R2=(Ab+u)2+v2 with r=\z\, then

ß \      |z|2 |P(z) - ß\2 - |P(z) - 1|2ReH)+p^)-

(4)

P(z)J (1 - |z|2) |P(Z)|

Since A^Cl-ßr^Kl-r*) and  D,=((1 —/3)r)/(l —r3),  the right-hand
side of (4) may be written

2\D-1(5) (fc - 2Aj.1T1 + /Sä-2)(A6 + u) + R + (¿Î - D2)R

Let S„(w, t>) denote the expression appearing in (5), then regrouping the

terms we have

Sb(u, v) = (k + ßRT*)(Ab + u) + {{{Ab + u) - A,)2 + v2- D2)R~\

(6) dSJdv = vR-%(u, v),

Tb(u, v) = -2ß(Ab + u) + (Dl -(Ab + u- A,)2 - v2)R + 2R3

(7) = -2ß(Ab + u) + (D2 + 2A¿At + «) - A\)R + R3-

Denote by Fb(R) the right-hand side of (7) with R cos f=Ab+u; then

(8) Fb(R) = 2{AlR - ß)R cos f + (D\ - A\ + R2)R.

Geometrical considerations show that for R e [Ab—Db, Ab+Db] the

function Fb(R) increases with increasing R. Since Ä cos y is the projection

onto the real axis, it must lie on the diameter of the circle of Lemma 1 ;

we have R cos xp'^.A1—D1 by virtue of Remark 1 and so for all b e [0, 1]

Fb(R) ^ {2{Al{A1 - DO -ß) + (D2 - A\ + (A, - D1)2))(^1 - D¿

'l-ßr2

= ('*-»(¿t|)K-d-'>°-
Hence the minimum of Sb(u, v) inside the circle \P(z)—Ab\-¿Db is attained

on the diameter. Setting v=0 in (5) we obtain

(9) Lb(R) = (1 + k)R + {ß+ l)^*-*1 - 2AX

where R=Ab+ue [Ab—Db,Ab+Db]. The absolute minimum of Lb(R) in

(0, oo) is attained at

(10) R' = ((1 + ß)AJ{l + k))v*
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and yields (3). Clearly R'<Ab+Db, but it is not always true that R' e

[Ab—Db, Ab+Db]. When R' is not in the interval then Lb(R) achieves its

minimum at the point Rb=Ab—Db from which we get (2). The transition

from (2) to (3) takes place for those values of A: and ß for which R'=Rb.

Lemma 3 [4].   Ifw(z) g sí, then for \z\ < 1

|z|2 - Kz)|2
(11) |zw'(z) - w(z)\ < " V'  .

1 - |zf

Theorem 1.   Suppose P(z) e ^b(a)for a G [0, 1), then, for all be [0, 1],

(12) «JUS» a--2d-a)r > + &+*•>   ,,„.<*,
I P(z) i - 1 + 2aèr + (2a - l)r2 1 + 2br + r2 ~

(13) ^ (2(xA1)1'2 -A,- a)/(l - a) if R' ^ Rb

where Rb=Ab—Db, R'=(oíA1)1/2, andr=\z\<l; Ab, Db as in Lemma 1.

Proof.   Taking the logarithmic derivative of both sides of (1) we get

[P(z)i 1(1 - w(z))(l -

^(l-Ä^Re
w(z)

(1 - w(z))(l - ßw(z)))

zw'(z) — w(z)

(i - w(z))(i - /?W(2;

-,

£ (1 - /3r^Re{p(z) + ^- - (1 + /?)}
P(z)

|zl2lP(z)-/?l2-|P(z)-H2\

(1 - |z|2) |P(z)| )

where the last inequality follows by virtue of Lemma 3 and the triangle

inequality. The proof is concluded by applying Lemma 2 with k=l and

0=2cc-l.

Figure 1 shows the transitional curve determined by R'=Rb for various

values of r from 0.3 to 0.6.

Remark 2. From Remark 1, R^Rb for be [0, 1]. Thus olA^R2

whenever olA^RI or equivalently, when

0 ^ (1 + (2<x - l)r2)(l - r) - a(l - (2a - l)r2)(l + r)

= (1 - z)W(r, a)

where

W(r, a) = 1 - 3r - 3(2a - l)r2 + (2a - l)r3 ^ 1 - 3r - 3r2 + r3

= (1 - r)(l - Ar + r2) ^ 0
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for each a e [0, 1). Hence (12) is valid for all a e [0, 1), b e [0, 1] and

r e [0, 2—31/2]. Thus the transitional curve for r=2—31/2 would just

touch the upper right-hand corner of the square in Figure 1.

3. The class ^(a). Let 0>'a(a.) denote the class of functions F(z)=

z+a(l —a)z2+- • • such that F'(z) e 3Pa(a). Results concerning distortion

and regions covered by the class together with other references may be

found in [1]. A radius of convexity theorem is also presented in [1] for

the class ^¿(a); the result, however, is exact only for the case a=0.

Here we will produce a sharp estimate for all a e [0, 1] and a e [0, 1).

From Nehari [2] it is known that F(z) maps |z|<r onto a convex region

if Re{l +zF"(z)/J"(z)}>0 for \z\ <r.

Lemma 4.   IfF(z) e ^'a(a.), then, for all a. e [0, 1) and a e [0,1],

Í       zF"(z)l
Re 1 +-—

I        F'W >
1 + 4xar + (6a - 4 + 4a2a)r2 + 4(2a - par3 + (2a -l)r4

(14) - (1 + 2aar + (2a - l)r2)(l + 2ar + r2)

ifRa^R'

(15) z«-**-* + *<*#"   ifRaûR'
1 — a

where

1 + 2aar + (2a - l)r2 1/2
Ra =-,       R = («A0   ,       r = |z| < 1.

1 + 2ar + r2

Proof Let P(z)=F'(z), then Re{l +zF"(z)/F'(z)}=1+Re{zP'(z)/P(z)}

and we may apply Theorem 1.

Theorem 2. Each F(z)e^'a(x) maps \z\<R onto a convex region

where R is the smallest positive root of the equation

1 + 4oar + (6a - 4 + 4a2a)r2 + 4(2a - l)ar3 + (2a - l)r4 = 0

ifR^R', andR=(l + (or1-!)1'2)1'2 ifRa^R', Ra andR' are as in Lemma

4. The result is sharp for each a e [0, 1) and a e [0, 1].

Proof.   Apply Lemma 4. For sharpness consider

F(z) = -(1 - 2a)z + (1 - a)((l - a) • log(l + z) - (1 + c) • log(l + z))

ifR,%R',

F(z) = -(1 - 2a)z + (1 - a)((l - c) • log(l + z) - (1 + c) ■ log(l - z))

if Ra ^ R'
where c is determined from RC=R'.
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Figure 2 shows the transitional line Ra=R' and displays some level

curves for various values of the radius of convexity.

4. The class ^*(a). Let y*(a) represent the class of functions

f(z)=z+a2z2+- • • which are analytic and for which Re{z/'(z)//(z)}>a

for a e [0, 1) and |z|<l. A. Schild [3] has shown that |a2|<2(l-a) and

obtained results on the radius of convexity for a subclass of Sf*(<x.).

Singh and Goel [4] obtained the exact radius of convexity for the entire

class Sr°*(v). Define

^î(«) = {M = * + 2fl(l - a)z2 + • • -:/(z) G ̂ *(a)}.

D. Tepper [5] found the exact radius of convexity for ^„(O). Here we

determine a sharp estimate for the entire class ^(a).

Lemma 5.   Iff(z) e Sr°t(a), then, for all a G [0, 1) and a e [0, 1],

l       /'(*) /
^ l+(6a-2)flr+(4a2fl2+8a-6)r2+(8a!!-2a-2)ar3-l-(2a-l)-r4

(16) = (l-r-2ar-|-r2)(l-l-2aar+(2a-l)r2)

ifRa ^ R'
2(a(2 - a)^01/2 - « - ¿i

(17) ^ —-—--1    i/Ra^R
1 — a

where

1 + 2aar + (2a - l)r2 /   « \W
R* =

1 + 2ar + r2

I    « V/2

Proof.   Let P(z)=zf'(z)\f(z), then Re{l+z/"(z)//'(z)}=Re{P(z)}-r-

Re{zP'(z)[P(z)}. Now apply Lemma 2 with /3=2a—1 and k=3—2a.

Theorem 3.    Eachf(z) e <9*%(<x) maps \z\ <R onto a convex region where

R is the smallest positive root of the equation

1 + (6a - 2)ar + (4a2a2 + 8a - 6)r2

+ (8a2 - 2a - 2)ar3 + (2a - l)2r4 = 0

if R,>R' and Ä=((5a-l)/(4a2-a-M+4a(a2-3a+2)1/2))1/2 if Ra^R'

where Ra and R' are as in Lemma 5. The result is sharp for each a G [0, 1)

and ae [0, \].

Proof.   Apply Lemma 5. For sharpness, let

f(z) = z/(l - 2az + z2)1-*,   if Ra ^ R',
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and

/(z) = z/(l - 2cz + z2)1-«,    if Ra ^ R',

where c is determined from RC=R'.

Figure 3 gives some level curves and the transitional curve for the

class Sr^{a).

Remark 3. By setting a=0 in Theorems 2 and 3 we could obtain sharp

results on odd functions in the two classes ^'(a) and £f*(v) for a 6 [0, 1).
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