PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 1, January 1974

TWO RADIUS OF CONVEXITY PROBLEMS

CARL P. MCCARTY

ABSTRACT. The sharp radius of convexity of functions with prescribed second coefficient is found for the two classes: functions starlike of order α , and functions whose derivative has real part greater than α .

1. Introduction. Let $\mathscr{P}(\alpha)$ denote the class of functions $P(z) = 1+b_1z+\cdots$ which are analytic and satisfy $\operatorname{Re}\{P(z)\} > \alpha$ for |z| < 1 where $\alpha \in [0, 1)$. If $\varepsilon = \exp\{-i \arg b_1\}$ then $P(\varepsilon z) = 1+|b_1|z+\cdots$ and we see that it is no actual restriction to limit our study of $\mathscr{P}(\alpha)$ to functions with a nonnegative real first coefficient. It is known [2] that $|b_1| \leq 2(1-\alpha)$ and we define $\mathscr{P}_b(\alpha) = \{P(z) \in \mathscr{P}(\alpha) : P'(0) = 2b(1-\alpha)\}$ for $b \in [0, 1]$. This paper extends results found in [1] by obtaining a lower bound on $\operatorname{Re}\{zP'(z)|P(z)\}$ for $P(z) \in \mathscr{P}_b(\alpha)$ and subsequently applying the results to obtain a sharp estimate for the radius of convexity of the two classes $\mathscr{S}^*_a(\alpha)$ and $\mathscr{P}'_a(\alpha)$ for each $a \in [0, 1]$ and $\alpha \in [0, 1]$ where

$$\mathscr{P}'_a(\alpha) = \{F(z) = z + a(1 - \alpha)z^2 + \cdots : F'(z) \in \mathscr{P}_a(\alpha)\}$$

and

$$\mathscr{S}_a^*(\alpha) = \{f(z) = z + 2a(1-\alpha)z^2 + \cdots :$$

Re $\{zf'(z)/f(z)\} > \alpha \text{ for } |z| < 1\}.$

The technique used to obtain the results is based on a method of Singh and Goel [4] and extends some of the results found therein.

2. Preliminaries. Let \mathscr{A} denote the class of functions w(z) such that w(0)=0 which are also analytic and satisfy |w(z)|<1 for |z|<1. We will occasionally use $\beta=2\alpha-1$ to simplify computations and statements of results.

© American Mathematical Society 1974

Received by the editors December 22, 1972 and, in revised form, March 23, 1973. AMS (MOS) subject classifications (1970). Primary 30A32, 30A76; Secondary 30A04.

Key words and phrases. Radius of convexity, functions starlike of order α , functions with positive real part.

CARL MCCARTY

LEMMA 1. If
$$P(z) \in \mathcal{P}_{b}(\alpha)$$
, then $|P(z) - A_{b}| \leq D_{b}$ for $b \in [0, 1]$ where

$$(1 + br)^{2} - \beta(b + r)^{2}r^{2} \qquad (1 - \beta)(b + r)(1 + br)r$$

$$A_b = \frac{(1+br) - \beta(b+r)}{(1+2br+r^2)(1-r^2)}, \qquad D_b = \frac{(1-br)(b+r)(1-r^2)}{(1+2br+r^2)(1-r^2)},$$

$$\beta = 2\alpha - 1 \quad and \quad r = |z| < 1.$$

PROOF. It is known that $P(z) \in \mathscr{P}_b(\alpha)$ if and only if there exists some $w(z) \in \mathscr{A}$ such that

(1)
$$P(z) = [1 + (1 - 2\alpha)w(z)]/[1 - w(z)].$$

So $w(z) = [P(z)-1]/[P(z)+(1-2\alpha)] = bz + \cdots = z\varphi(z)$ where $\varphi(z)$ is analytic and $|\varphi(z)| \le 1$ for |z| < 1 with $\varphi(0) = b$. Now, $(\varphi(z)-b)/(1-b\varphi(z)) < z$ and it follows that $\varphi(z) < (z+b)/(1+bz)$ and

$$|w(z)| = |z\varphi(z)| \le |z| (|z| + b)/(1 + b |z|).$$

Let

$$g(z) = \frac{|z| + b}{1 + b |z|} z$$
 and $T(z) = \frac{1 + (1 - 2\alpha)z}{1 - z}$.

We note that the image of $|z| \leq r$ under g(z) is a disk and that T(z) is a bilinear transformation. The image of $|z| \leq r < 1$ under P(z) is contained within the image of $|z| \leq r$ under $(T \circ g)(z)$ which proves the lemma.

REMARK 1. For a fixed $r \in [0, 1)$, $A_b - D_b$ decreases as b increases over the interval [0, 1] since

$$\frac{\partial}{\partial b}\left(A_{b}-D_{b}\right)=-\frac{(1-\alpha)(1-r^{2})}{\left(1+2br+r^{2}\right)^{2}}<0.$$

LEMMA 2. Let $P(z) \in \mathcal{P}_b(\alpha)$, $\beta = 2\alpha - 1 \in [-1, 1)$, and $k \ge 1$; then for $b \in [0, 1]$

$$\operatorname{Re}\left(kP(z) + \frac{\beta}{P(z)}\right) - \frac{|z|^{2} |P(z) - \beta|^{2} - |P(z) - 1|^{2}}{(1 - |z|^{2}) |P(z)|}$$

$$(k + \beta) + 2((k + 2)\beta + k)br + ((k + 1)(\beta + 1)^{2}b^{2} + 2(k + \beta) - (\beta - 1)^{2})r^{2} + 2(k\beta + (k + 2))\beta br^{3} + (1 + k\beta)\beta r^{4}}{(1 + 2br + r^{2})(1 + (\beta + 1)br + \beta r^{2})}$$
if $R_{b} \ge R$

(3)
$$\geq 2((1+k)(1+\beta)A_1)^{1/2} - A_1 \text{ if } R_b \leq R'$$

where A_b and D_b are as in Lemma 1 with $R_b = A_b - D_b$ and

$$R' = ((1 + \beta)A_1/(1 + k))^{1/2}.$$

[January

PROOF. Let $P(z)=A_b+u+iv$ and $R^2=(A_b+u)^2+v^2$ with r=|z|, then

(4)

$$\operatorname{Re}\left\{kP(z) + \frac{\beta}{P(z)}\right\} - \frac{|z|^{2} |P(z) - \beta|^{2} - |P(z) - 1|^{2}}{(1 - |z|^{2}) |P(z)|}$$

$$= \left(k - 2\left(\frac{1 - \beta r^{2}}{1 - r^{2}}\right)R^{-1} + \beta R^{-2}\right)(A_{b} + u)$$

$$+ R + \left(\frac{1 - \beta^{2}r^{2}}{1 - r^{2}}\right)R^{-1}.$$

Since $A_1 = (1-\beta r^2)/(1-r^2)$ and $D_1 = ((1-\beta)r)/(1-r^2)$, the right-hand side of (4) may be written

(5)
$$(k - 2A_1R^{-1} + \beta R^{-2})(A_b + u) + R + (A_1^2 - D_1^2)R^{-1}$$

Let $S_{b}(u, v)$ denote the expression appearing in (5), then regrouping the terms we have

(6)
$$S_{b}(u, v) = (k + \beta R^{-2})(A_{b} + u) + (((A_{b} + u) - A_{1})^{2} + v^{2} - D_{1}^{2})R^{-1}, \\ \partial S_{b}/\partial v = vR^{-4}T_{b}(u, v),$$

(7)
$$T_{b}(u, v) = -2\beta(A_{b} + u) + (D_{1}^{2} - (A_{b} + u - A_{1})^{2} - v^{2})R + 2R^{3}$$
$$= -2\beta(A_{b} + u) + (D_{1}^{2} + 2A_{1}(A_{b} + u) - A_{1}^{2})R + R^{3}.$$

Denote by $F_b(R)$ the right-hand side of (7) with $R \cos \psi = A_b + u$; then

(8)
$$F_b(R) = 2(A_1R - \beta)R\cos\psi + (D_1^2 - A_1^2 + R^2)R.$$

Geometrical considerations show that for $R \in [A_b - D_b, A_b + D_b]$ the function $F_b(R)$ increases with increasing R. Since $R \cos \psi$ is the projection onto the real axis, it must lie on the diameter of the circle of Lemma 1; we have $R \cos \psi \ge A_1 - D_1$ by virtue of Remark 1 and so for all $b \in [0, 1]$

$$F_{\delta}(R) \ge (2(A_1(A_1 - D_1) - \beta) + (D_1^2 - A_1^2 + (A_1 - D_1)^2))(A_1 - D_1)$$

= $\left((1 - \beta)\left(\frac{1 - \beta r^2}{(1 + r)^2}\right)\right)(A_1 - D_1) > 0.$

Hence the minimum of $S_b(u, v)$ inside the circle $|P(z) - A_b| \leq D_b$ is attained on the diameter. Setting v=0 in (5) we obtain

(9)
$$L_b(R) = (1+k)R + (\beta+1)A_1R^{-1} - 2A_1$$

where $R = A_b + u \in [A_b - D_b, A_b + D_b]$. The absolute minimum of $L_b(R)$ in $(0, \infty)$ is attained at

(10)
$$R' = ((1 + \beta)A_1/(1 + k))^{1/2}$$

1974]

[January

and yields (3). Clearly $R' < A_b + D_b$, but it is not always true that $R' \in$ $[A_b - D_b, A_b + D_b]$. When R' is not in the interval then $L_b(R)$ achieves its minimum at the point $R_b = A_b - D_b$ from which we get (2). The transition from (2) to (3) takes place for those values of k and β for which $R' = R_b$.

LEMMA 3 [4]. If $w(z) \in \mathcal{A}$, then for |z| < 1

(11)
$$|zw'(z) - w(z)| \leq \frac{|z|^2 - |w(z)|^2}{1 - |z|^2}.$$

THEOREM 1. Suppose $P(z) \in \mathscr{P}_b(\alpha)$ for $\alpha \in [0, 1)$, then, for all $b \in [0, 1]$,

(12)
$$\operatorname{Re}\left(\frac{zP'(z)}{P(z)}\right) \ge \frac{-2(1-\alpha)r}{1+2\alpha br+(2\alpha-1)r^2} \frac{b+2r+br^2}{1+2br+r^2} \quad \text{if } R' \le R_b$$

(13)
$$\geq (2(\alpha A_1)^{1/2} - A_1 - \alpha)/(1 - \alpha) \qquad \text{if } R' \geq R_b$$

where $R_b = A_b - D_b$, $R' = (\alpha A_1)^{1/2}$, and r = |z| < 1; A_b , D_b as in Lemma 1.

PROOF. Taking the logarithmic derivative of both sides of (1) we get

$$\operatorname{Re}\left\{\frac{zP'(z)}{P(z)}\right\} = (1-\beta)\operatorname{Re}\left\{\frac{zw'(z)}{(1-w(z))(1-\beta w(z))}\right\}$$
$$\geq (1-\beta)\left(\operatorname{Re}\left\{\frac{w(z)}{(1-w(z))(1-\beta w(z))}\right\} - \left|\frac{zw'(z)-w(z)}{(1-w(z))(1-\beta w(z))}\right|\right)$$
$$\geq (1-\beta)^{-1}\left(\operatorname{Re}\left\{P(z) + \frac{\beta}{P(z)} - (1+\beta)\right\} - \frac{|z|^2 |P(z) - \beta|^2 - |P(z) - 1|^2}{(1-|z|^2) |P(z)|}\right)$$

where the last inequality follows by virtue of Lemma 3 and the triangle inequality. The proof is concluded by applying Lemma 2 with k=1 and $\beta = 2\alpha - 1$.

Figure 1 shows the transitional curve determined by $R' = R_b$ for various values of r from 0.3 to 0.6.

REMARK 2. From Remark 1, $R_1 \leq R_b$ for $b \in [0, 1]$. Thus $\alpha A_1 \leq R_b^2$ whenever $\alpha A_1 \leq R_1^2$ or equivalently, when

$$0 \leq (1 + (2\alpha - 1)r^2)(1 - r) - \alpha(1 - (2\alpha - 1)r^2)(1 + r)$$

= (1 - \alpha)W(r, \alpha)

where

$$W(r, \alpha) = 1 - 3r - 3(2\alpha - 1)r^{2} + (2\alpha - 1)r^{3} \ge 1 - 3r - 3r^{2} + r^{3}$$

= $(1 - r)(1 - 4r + r^{2}) \ge 0$

for each $\alpha \in [0, 1)$. Hence (12) is valid for all $\alpha \in [0, 1)$, $b \in [0, 1]$ and $r \in [0, 2-3^{1/2}]$. Thus the transitional curve for $r=2-3^{1/2}$ would just touch the upper right-hand corner of the square in Figure 1.

3. The class $\mathscr{P}'_{a}(\alpha)$. Let $\mathscr{P}'_{a}(\alpha)$ denote the class of functions $F(z) = z + a(1-\alpha)z^{2} + \cdots$ such that $F'(z) \in \mathscr{P}_{a}(\alpha)$. Results concerning distortion and regions covered by the class together with other references may be found in [1]. A radius of convexity theorem is also presented in [1] for the class $\mathscr{P}'_{a}(\alpha)$; the result, however, is exact only for the case $\alpha = 0$. Here we will produce a sharp estimate for all $a \in [0, 1]$ and $\alpha \in [0, 1)$.

From Nehari [2] it is known that F(z) maps |z| < r onto a convex region if $\operatorname{Re}\{1+zF''(z)/F'(z)\}>0$ for |z| < r.

LEMMA 4. If
$$F(z) \in \mathscr{P}'_{a}(\alpha)$$
, then, for all $\alpha \in [0, 1)$ and $a \in [0, 1]$,

$$\operatorname{Re}\left\{1 + \frac{zF''(z)}{F'(z)}\right\}$$
(14)
$$\geq \frac{1 + 4\alpha ar + (6\alpha - 4 + 4a^{2}\alpha)r^{2} + 4(2\alpha - 1)ar^{3} + (2\alpha - 1)r^{4}}{(1 + 2\alpha ar + (2\alpha - 1)r^{2})(1 + 2ar + r^{2})}$$
if $R_{a} \geq R'$

(15)
$$\geq \frac{(1-2\alpha)-A_1+2(\alpha A_1)^{1/2}}{1-\alpha}$$
 if $R_a \leq R'$

where

1974]

$$R_{a} = \frac{1 + 2\alpha ar + (2\alpha - 1)r^{2}}{1 + 2ar + r^{2}}, \qquad R' = (\alpha A_{1})^{1/2}, \qquad r = |z| < 1.$$

PROOF Let P(z) = F'(z), then $\operatorname{Re}\{1 + zF''(z)/F'(z)\} = 1 + \operatorname{Re}\{zP'(z)/P(z)\}$ and we may apply Theorem 1.

THEOREM 2. Each $F(z) \in \mathscr{P}'_a(\alpha)$ maps |z| < R onto a convex region where R is the smallest positive root of the equation

 $1 + 4\alpha ar + (6\alpha - 4 + 4a^2\alpha)r^2 + 4(2\alpha - 1)ar^3 + (2\alpha - 1)r^4 = 0$

if $R_a \ge R'$, and $R = (1 + (\alpha^{-1} - 1)^{1/2})^{1/2}$ if $R_a \le R'$, R_a and R' are as in Lemma 4. The result is sharp for each $\alpha \in [0, 1]$ and $a \in [0, 1]$.

PROOF. Apply Lemma 4. For sharpness consider

$$F(z) = -(1 - 2\alpha)z + (1 - \alpha)((1 - a) \cdot \log(1 + z) - (1 + c) \cdot \log(1 + z))$$

if $R_a \ge R'$,
$$F(z) = -(1 - 2\alpha)z + (1 - \alpha)((1 - c) \cdot \log(1 + z) - (1 + c) \cdot \log(1 - z))$$

if $R_a \le R'$

where c is determined from $R_c = R'$.

CARL MCCARTY

[January

FIGURE 2

FIGURE 3

Figure 2 shows the transitional line $R_a = R'$ and displays some level curves for various values of the radius of convexity.

4. The class $\mathscr{G}_{a}^{*}(\alpha)$. Let $\mathscr{G}^{*}(\alpha)$ represent the class of functions $f(z)=z+a_{2}z^{2}+\cdots$ which are analytic and for which $\operatorname{Re}\{zf'(z)|f(z)\}>\alpha$ for $\alpha \in [0, 1)$ and |z|<1. A. Schild [3] has shown that $|a_{2}|\leq 2(1-\alpha)$ and obtained results on the radius of convexity for a subclass of $\mathscr{G}^{*}(\alpha)$. Singh and Goel [4] obtained the exact radius of convexity for the entire class $\mathscr{G}^{*}(\alpha)$. Define

$$\mathscr{S}_a^*(\alpha) = \{f(z) = z + 2a(1-\alpha)z^2 + \cdots : f(z) \in \mathscr{S}^*(\alpha)\}.$$

D. Tepper [5] found the exact radius of convexity for $\mathscr{S}_a^*(0)$. Here we determine a sharp estimate for the entire class $\mathscr{S}_a^*(\alpha)$.

LEMMA 5. If
$$f(z) \in \mathscr{G}_a^*(\alpha)$$
, then, for all $\alpha \in [0, 1)$ and $a \in [0, 1]$,

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\}$$

$$(16) \geq \frac{1 + (6\alpha - 2)ar + (4\alpha^2 a^2 + 8\alpha - 6)r^2 + (8\alpha^2 - 2\alpha - 2)ar^3 + (2\alpha - 1)r^4}{(1 + 2ar + r^2)(1 + 2\alpha ar + (2\alpha - 1)r^2)}$$

$$if R_a \geq R'$$

(17)
$$\geq \frac{2(\alpha(2-\alpha)A_1)^{1/2}-\alpha-A_1}{1-\alpha} \quad if \ R_a \leq R$$

where

$$R_{\alpha} = \frac{1 + 2\alpha ar + (2\alpha - 1)r^2}{1 + 2ar + r^2}, \quad R' = \left(\frac{\alpha}{2 - \alpha}A_1\right)^{1/2}, \quad r = |z| < 1.$$

PROOF. Let P(z)=zf'(z)/f(z), then $\operatorname{Re}\{1+zf''(z)/f'(z)\}=\operatorname{Re}\{P(z)\}+\operatorname{Re}\{zP'(z)/P(z)\}$. Now apply Lemma 2 with $\beta=2\alpha-1$ and $k=3-2\alpha$.

THEOREM 3. Each $f(z) \in \mathscr{G}_a^*(\alpha)$ maps |z| < R onto a convex region where R is the smallest positive root of the equation

 $1 + (6\alpha - 2)ar + (4\alpha^2 a^2 + 8\alpha - 6)r^2$ $+ (8\alpha^2 - 2\alpha - 2)ar^3 + (2\alpha - 1)^2 r^4 = 0$

if $R_a \ge R'$ and $R = ((5\alpha - 1)/(4\alpha^2 - \alpha + 1 + 4\alpha(\alpha^2 - 3\alpha + 2)^{1/2}))^{1/2}$ if $R_a \le R'$ where R_a and R' are as in Lemma 5. The result is sharp for each $\alpha \in [0, 1)$ and $a \in [0, 1]$.

PROOF. Apply Lemma 5. For sharpness, let

$$f(z) = z/(1 - 2az + z^2)^{1-\alpha}$$
, if $R_a \ge R'$,

and

$$f(z) = z/(1 - 2cz + z^2)^{1-\alpha}$$
, if $R_a \leq R'$,

where c is determined from $R_c = R'$.

Figure 3 gives some level curves and the transitional curve for the class $\mathscr{G}_a^*(\alpha)$.

REMARK 3. By setting a=0 in Theorems 2 and 3 we could obtain sharp results on odd functions in the two classes $\mathscr{P}'(\alpha)$ and $\mathscr{S}^*(\alpha)$ for $\alpha \in [0, 1)$.

References

1. C. P. McCarty, Functions with real part greater than α , Proc. Amer. Math. Soc. 35 (1972), 211–216.

2. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640.

3. A. Schild, On starlike functions of order α , Amer. J. Math. 87 (1965), 65-70. MR 30 #4929.

4. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan 23 (1971), 323-339. MR 43 #7617.

5. D. E. Tepper, On the radius of convexity and boundary distortion of schlicht functions, Trans. Amer. Math. Soc. 150 (1970), 519-528. MR 42 #3268.

DEPARTMENT OF MATHEMATICS, LA SALLE COLLEGE, PHILADELPHIA, PENNSYLVANIA 19141

160