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A NOTE  ON PERIODIC  SOLUTIONS FOR
DELAY-DIFFERENTIAL SYSTEMS1

G. B. GUSTAFSON AND K. SCHMITT

Abstract. Let f(t, x,y):[0, <x>)xR"xR"-~R" be continuous

and 1-periodic in t, t(í):[0, co)-<-[0, h] (0<A^1) continuous and

1-periodic. A simple geometric condition (Theorem 1) is given for

the existence of 1-periodic solutions x{t) of the nonlinear delay-

differential system x'(t)=f(t, x(t), x(t—T{t))), with x(t) in a given

bounded convex open set G in R". The addition of a Lipschitz

condition in x and monotonicity in y allows one to calculate x(j)

by a monotone sequence of successive approximations (Theorem 2).

Extensions to a more general functional differential equation

x'(t)=gO, x(t), xt) are given.

1. Introduction. Let/: [0, oo) x Rn x Rn^Rn, t: [0, oo)->[0, h] be con-

tinuous, 1-periodic in the variable /, and consider the first order nonlinear

differential system

(1) x'(t) =f(t, X(t), X(t - r(t)))        (' = d\dt).

The purpose of this note is to extend the range of applicability, and remove

complicated hypotheses, in certain results of Mikolajska [3] concerning

the existence and successive approximation of periodic solutions of (1)

with r(t)mhml. We consider separately the question of successive

approximations (§4); the existence is established by the following

Theorem 1. Let G be a bounded convex open set in Rn containing 0, and

and assume there is a function N: dG-+Rn — {0} satisfying

(2) N(x)-x>0  forxedG,

(3) G S {y:N(x) • (y - x) < 0}   for each x e dG.

Suppose f. [0, oo)xÄnx,Rn->-Än, t:[0, oo)-*[0, h] are continuous func-

tions, I-periodic in the variable t and

(4) N(x) -f(t, x, y) is positive (negative) for all x e dG, y eG,t e [0, 1 ].

Then equation (1) has a \-periodic solution x(t) with values in G.
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Corollary. Let f. [0, co) xRnxRn, r: [0, oo)-»-[0, h] be continuous,

and {-periodic in the variable t (0<Ag 1). Assume that there exists a number

R>0 such that

(5) x •/(*, x,y) > 0  for all |x| = R, \y\ ^ R, t e [0, 1],

or

(5)' x •/(/, x, y)< 0  /or all |x| = Ä, |7| ^ .R, í g [0, 1].

Then equation (1) Aas a l-periodic solution with values in \x\<R. (In the

sequel, \ ■ \ denotes the Euclidean norm in R", and X • y is the usual inner

product.)

Remark. As noted in the corollary, it is often convenient to choose

the set G to be a sphere with center 0. For second order scalar equations,

it is sometimes more natural for G to be a rectangle with barycenter 0,

and one can easily construct examples where a triangle leads to the simplest

calculations.

We remark that N(x) is not required to be continuous (see Theorem 2

for an application).

Conditions (2), (3) simply say that N(x) is an outer normal for G, while

relation (5) says that the outer normal N(x) and the field/are in the same

(or opposite) half-space determined by the hyperplane N(x) • [y—x]=0.

The above theorem was motivated by results of Z. Mikolajska [3],

where functions similar to Lyapunov functions were used to establish the

existence of periodic solutions of a scalar equation (1), with r(t)=h, and

period 1 replaced by period h. In honesty, these equations are really not

delay equations from the point of view of periodic solutions, because the

delay can be transformed out of the problem by a change of variables.

In this note, we obtain a number of improvements on the existence

results in [3]. First, we consider equations (1) that are truly delay equations,

and point out how to extend the results to more general functional

differential equations (see §3). Secondly, we note that the complicated

conditions B and B* of Mikolajska [3] imply the simple condition (5)

of the corollary above, hence existence in [3] follows from our theorem.

Finally, our theorem gives a simple geometric condition for existence of

periodic solutions of systems (rather than scalar equations), without

assuming monotonicity of/, or that/is Lipschitzian. In addition, our

result is obtained by a very short proof, in which we appeal to Brouwer

degree calculations, and an elegant theorem of V. V. Strygin [5].

2. Proof of Theorem 1. Let us show that our theorem follows as a

simple application of a theorem of V. V. Strygin [5]. In order to apply the

result in [5], we first define a continuum of nested convex regions GÀ,

X^.0, as follows. Given x £ G, let x be the positive constant multiple of x
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on dG, and put

Gx = {x$G:\x - x\< A |x|> U G,       A>0,

G0 = G.

The function/(r, x, y) is modified, for purposes of the proof, as follows.

Let/j be defined by

fi(t, x, y) = fit, x, y),       xeG,

= f(t,x,y),       x$G.

Then define the modification Ft of the function/by the formula

fit, x, y) = e/i(i, x, y),       yeG,

= efx(t, x, y),      y$G.

We observe that Fc is continuous in all its variables. The idea is to show

that the modified equation

(*) X'(t) = Fe(t, x(t), x(t - r(t)))       (0 < 8 £ 1)

has a 1-periodic solution x(t) in G for c=l. It then follows that x(t) is a

1-periodic solution of equation (1) with values in G.

It will be shown that all possible 1-periodic solutions of equation (*)

have values in G. Let x(t) be a 1-periodic solution of (*), and assume, in

order to obtain a contradiction, that x(t) belongs to dGx for some X^O.

Then there exists a maximal A^O for which this is true. Hence, there is a

point r0 with x(t0) e dGx, and x(t) e Gx for all other values of r. In par-

ticular, x(t—r(t)) e Gx, so we may apply condition (4) to obtain for x0=

x(t0), y0=x(t0—r(t0)), the relation (assume the positive sign in (4); the

reasoning is similar for the negative sign)

N(xo)-Fc(to,x0,y0)>0.

Let us write x(t0+h)=x(t0)+JJ x'(t0+sh)h ds, and choose A>0 so small

that N(x0) • Fc(t, x(t), x(t-r(t)))>0 for t0<±t<t0+h. Then equation (*)

gives

(**) JV(JE0) • [x(t0 + h) - x(t0)] > 0.

Since z0=x(t0+h) e Gx, and x0 e Gx, it follows that

H = Izol"1 |z0 - z0\ ^ I = \Xq\~1 \x0 - x0\,

or else z0 e G. The case z0eG is eliminated by relations (**) and (3).
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Indeed, x0=ax0, a^l, gives

0 < JV(x0) • [z0 - x„] = aAr(xo) ■ [a~% - x0],

but a^z,) g G by convexity, so (3) gives the reverse sign in this inequality.

On the other hand, if z0 £ G, then z0=bz0, b>\. We see that ¡x= 1 — b~l,

X=l—a~1, and therefore p^X gives b^a. But then

0 < JV(x0) • [z0 - x0] = aN(x0) ■ [a_1èz0 - x0].

However, a~xb^ 1 implies arlbz0 e G, and by (3) the sign must be reversed.

Therefore, in both cases, a contradiction is reached. This proves that all

possible 1-periodic solutions of equation (*) have values in G.

Let us calculate the Brouwer degree d(T, G, 0) of the mapping

Tx =    Ft(t, x,x)dt,       xeG,   0 < e ^ 1.

First, Fc(t, x, x)=ef(t, x, x) for x e G; therefore (if (4) is positive)

N(x) -Tx>0,       x G dG.

Secondly, we may apply the Poincaré-Bohl transformation

H(x, X) = XTx + (1 - X)x,       xeG,   0 ^ X ̂  1,

to the identity and T, observe that N(x) ■ H(x, t)>0 on dG, O^r^l,

because of (2) and (4), and conclude, by invariance of Brouwer degree

under homotopy [4], that the degree in question is unity, hence nonzero.

We may now apply the result of V. V. Strygin [5, p. 601] to equation (*)

and obtain a 1-periodic solution x(t) of the modified equation with

x(t) g G, Orgf^l, for e=l. The definition of the modified equation shows

that x(t) is a 1-periodic solution of equation (1), and the proof is complete.

3. Generalizations.   Instead of equation (1), we may also consider

the more general functional equation

(6) x'(t)=f(t,x(t),xt),

where /: [0, oo)xRnxC([-h, 0]->-/r)->-/?n is continuous, and xte

C([-h,0]-*Rn) is given as usual by the formula x((0)=x(/-|-0), — h^

05íO. The very same theorem is valid for equation (6), provided we assume

that 0</z^ 1 ,/is 1-periodic in t, relations (2), (3) hold, and (4) is replaced

by

, For all xedG,ye C([-h, 0] -* G), t e [0, 1],

we have N(x) -f(t, x, y) > 0 (or negative).

The proof of §2 extends to this setting with only minor modifications
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4. Successive approximations. It is shown by Z. Mikolajska [3] that

equation (1) with r(t)=h has a periodic solution x(t) which is the limit of

a decreasing sequence of successive approximations. To do this, Mikola-

jska imposes a complicated hypothesis (hypothesis B or B*) involving a

function V(t, x) similar to a Lyapunov function, and, in addition, it is

assumed that/(i, x,y) is increasing in y, A-periodic in /, and Lipschitz

continuous in x. We replace Mikolajska's conditions B and B* by a

simple geometric condition, apply Theorem 1, and obtain the following

result for systems, which is more tractable for special equations.

Theorem 2. Let g: [0, x)xRnxRn—Rn, r: [0, oo)—[0, h] (0<h<\)

be continuous and \-periodic in t, with g(t,x,y) Lipschitz continuous in

x, gi(t,x,y) is increasing with respect toyk, k^i, l&k<n, 1 </'_«, and

(i) x¿£¿(r,;c,j)>0 for \xt\=R, max1SjSn|x3|^F, max^^Jy^R,

i' = l,2, ••• ,n,or

(i)' the reverse inequality holds in (i).

Then there is a sequence {xn(/)}"=0 of 1-periodic functions satisfying

(ii) -R<x?+1(t)<x?(t)<R, n^l, 1^'=«,

(iii) x%t)=R, 1=/=/î, and

<+i(t) = g(t, xn+1(t), xn(t - r(t))),       n > 0,

which converge uniformly to a \-periodic solution of

x'(t) = g(t, x(t), x(t - r(t))).

Proof. Let x°(t) be given by (iii), let G be the parallelopiped defined

by \x(\<R (l^i^n). For x e dG, let N(x)=(e1, ■ ■ • , en) where et=0 if

\Xi\<R, £i=xt if |x,|=Ä, 2=1, • • • , n. Then relations (2), (3) are easily

verified. It is easy to see that (i) or (i)' implies (4), with / replaced by g.

Let us apply Theorem 1 to/(f, x,y)=g(t, x, x°(t)), where x°(t) is defined

in (iii). Then there exists a periodic solution x1(t) oíx'(t)=g(t, x(t), x"(t))

with values in G, and this gives inequality (ii) for n=0.

To establish the existence of the sequence {*"(?)}, we proceed by

induction, armed with techniques similar to those in Lemma 2, p. 28,

in Mikolajska [3]. For this purpose, one needs a vector comparison

theorem (see for example, P. Hartman [2, Example 4.1(6), p. 28]), in

order to show that the set

Z* = {x e Rn: -R = xt ^ xt"(0), 1 ^ i ^ n}

is mapped back into itself by the mapping

T* : x -+ y(l, x),       y'(t, x) = g(t, y(t, x), xn(t)),       y(0, x) = x.
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The Lipschitz condition makes T* continuous, and the Brouwer fixed

point theorem [4, pp. 74, 96] produces a fixed point of T*, say x0. Then

xn+1(t)=y(t, x0) is the desired periodic solution, completing the induction.

We use an Arzela-Ascoli theorem argument together with Dini's

theorem to complete the proof.

Corollary. Let g:[0, oo)xR1xR1-^R1, t:[0, oo)-*[0,h] (0<h<l)

be continuous, \-periodic in t, g(t,x,y) Lipschitz continuous in x and

increasing in y, with

g(t,R,y)g(t,-R,y)<0,       0 ^ t ^ 1,   (y) <j R.

Then there is a decreasing sequence of \-periodic functions with values in

(-R, R) satisfying x'n+1(t)=g(t, xn+1(t), x„(t)), with {xn} uniformly con-

vergent to a {-periodic solution ofx'(t)=g(t, x(t), x(t—r(t))).

Example. Let/(i, y) : [0, oo) x R1^Rl, a(t) : [0, oo)--.»1, r(t) : [0, oo)^

[0, h] (0<A_U) be continuous and 1-periodic in t, with/increasing in y,

\a(t)\>0, and

lim R-1 • sup{|/(i, jO|:0 £ ' ¿ 1. M ¿ *} - 0.

Then a periodic solution of x'(t)=a(t)x(t)+f(t,x(t—T(t))) can be

computed by successive approximations as in the corollary.

Remark. The theorem has an immediate extension to functional

equations of the form x'(t)=g(t, x(t), xt), which the reader can easily

supply. The appropriate differential inequality theorem needed in the

proof can be modeled after the one in P. Hartman [2, Example 4.1(6),

p. 28] using the techniques in S. G. Deo and G. S. Ladde [1, Theorem 1,

p. 47].
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