AREA OF BERNSTEIN-TYPE POLYNOMIALS

MARTIN E. PRICE

ABSTRACT. Bernstein polynomials in one variable are known to be total-variation diminishing when compared to the approximated function f. Here we consider the two variable case and give a counterexample to show they are not area-diminishing. Sufficient conditions are then given on a continuous function f to insure convergence in area. A similar theorem is proved for Kantorovitch polynomials in the case f is summable.

We consider the two-dimensional Bernstein polynomials $B_{n,m}f$, and the corresponding Kantorovitch polynomials $K_{n,m}f$, for functions z=f(x,y) defined on the unit square Q. Sufficient conditions are given to insure the convergence in area of these polynomials. In particular if f is summable and generalized absolutely continuous on Q, then $LK_{n,m}f \rightarrow \Phi f$ where L is Lebesgue area, and Φ is the Cesari-Goffman generalized area; if f is continuous and ACT, with R-integrable Tonelli lengths, then $LB_{n,m}f \rightarrow Lf$.

For any f defined on all of Q,

$$B_{n,m}f(x, y) = \sum_{r=0}^{n} \sum_{r=0}^{m} f\left(\frac{r}{n}, \frac{s}{m}\right) p_{n,r}(x) p_{m,s}(y)$$

where $p_{N,R}(t) = {N \choose R} t^R (1-t)^{N-R}$.

For summable f on Q,

$$K_{n,m}f(x, y) = \sum_{r=0}^{n} \sum_{s=0}^{m} I_{r,s} p_{n,r}(x) p_{m,s}(y)$$

where

$$I_{r,s} = (n+1)(m+1) \int_{r/(n+1)}^{(r+1)/(n+1)} \int_{s/(m+1)}^{(s+1)/(m+1)} f(\xi, \eta) \, d\xi \, d\eta.$$

If f is continuous, $B_{n,m}f$ and $K_{n,m}f$ converge uniformly to f. Although the behavior of $B_{n,m}f$ for discontinuous functions is quite erratic,

Received by the editors March 20, 1971.

AMS (MOS) subject classifications (1970). Primary 26A63; Secondary 41A10.

Key words and phrases. Generalized area, generalized absolute continuity, Kantorovitch polynomials, Bernstein polynomials.

e.g. [L, p. 28], and $[P_1]$, we have

PROPOSITION 1. If f is summable on Q, $K_{n,m}f$ converges in the L_1 sense to f.

PROOF. For all m, n, $\int_0^1 \int_0^1 K_{n,m} f = \int_0^1 \int_0^1 f$ because $\int_0^1 p_{N,R}(t) dt = 1/(N+1)$ for any N and $R=0, 1, \dots, N$. Hence $||K_{n,m}f||_1 \le ||f||_1$. Choose a continuous h such that $||f-h||_1 \le \varepsilon/3$. Then

$$||f - K_{n,m}f||_1 \le ||f - h||_1 + ||h - K_{n,m}h||_1 + ||K_{n,m}h - K_{n,m}f||_1$$

$$\le 2||f - h||_1 + ||h - K_{n,m}h||_1.$$

Since h is continuous, the last term is also at most $\varepsilon/3$ for large m and n, which completes the proof.

Cesari and later Goffman have defined equivalent areas for summable functions on Q. We give Goffman's version $[G_1]$. Let

$$\Phi f \equiv \inf_{\{p_i\}} \liminf_{i \to \infty} L(p_i)$$

where p_i are quasilinear functions converging L_1 to f and the inf is taken over all such sequences of p_i . Φ is lower semicontinuous with respect to L_1 convergence and coincides with L for continuous f.

If f(x, y) is continuous, the linear variation for fixed y is denoted by $V_x f(y)$; similarly $V_y f(x)$. Their Lebesgue integrals, the Tonelli variations are $V_x f = \int_0^1 V_x f(y) dy$ and $V_y f = \int_0^1 V_y f(x) dx$. Correspondingly for summable f(x, y), the linear generalized variations are $\varphi_x f(y)$ and $\varphi_y f(x)$ where variation in each case is computed only over points of linear approximate continuity. The generalized Tonelli variations are $\varphi_x f = \int_0^1 \varphi_x(y) dy$ and $\varphi_y f = \int_0^1 \varphi_y(x) dx$. For continuous f and g,

(1a)
$$L(f+g) \le Lf + V_x g + V_y g$$

and for summable f and g,

(1b)
$$\Phi(f+g) \leq \Phi f + \varphi_x g + \varphi_y g.$$

A continuous f(x, y) is ACT if $V_x f$ and $V_y f$ are finite and f is absolutely continuous on almost all lines parallel to each coordinate axis. A summable f is said to be gACT if $\varphi_x f$ and $\varphi_y f$ are finite, and there exists an $h \sim g$ such that h is absolutely continuous on almost all lines parallel to each coordinate axis. Functions of gACT type may be "essentially discontinuous" i.e. every $h \sim f$ is nowhere continuous $[G_2]$.

For finite valued f(x) on [0, 1],

$$B_n f(x) \equiv \sum_{n=0}^{n} f\left(\frac{r}{n}\right) p_{n,r}(x)$$

and for summable f,

$$K_n f(x) \equiv \sum_{r=0}^n (n+1) \left(\int_{r/(n+1)}^{(r+1)/(n+1)} f(\xi) \ d\xi \right) p_{n,r}(x).$$

Let V be total variation, φ be variation over points of approximate continuity, l the Jordan length, and λ the length over points of approximate continuity. Then for all n,

(2) (a)
$$VB_n f \leq Vf$$
, (c) $lB_n f \leq lf$,
(b) $VK_n f \leq \varphi f$, (d) $\lambda K_n f \leq \lambda f$.

Part (a) is in [L]; (b) is in [P₂]; (c) and (d) follow from (a) and (b) by an integral-geometric formula of Cauchy and Steinhaus [P₂]. In virtue of the lower semicontinuity of V and l with respect to uniform convergence, and of φ and λ with respect to L_1 convergence, all four functionals converge as $n\to\infty$. It is thus reasonable to conjecture $LB_{n,m}f\to Lf$ and $LK_{n,m}f\to \Phi f$ as $n,m\to\infty$ for appropriate classes of functions.

There is a major difference in the two variable case however. Construct a C^{∞} "rounded spike" function f_{ε} on Q which vanishes off a circular neighborhood C_{ε} of $(\frac{1}{2}, \frac{1}{2})$ and assumes the value 1 at $(\frac{1}{2}, \frac{1}{2})$. By making the spike sufficiently thin, $Lf_{\varepsilon}=1+\varepsilon$ for arbitrarily small positive ε . On the other hand $B_{22}f_{\varepsilon}=4xy(1-x)(1-y)$ and is independent of the base radius r_{ε} of the spike. Hence, though f_{ε} is C^{∞} , $LB_{22}f_{\varepsilon}>1+\varepsilon=Lf_{\varepsilon}$ for some ε in contrast to the relations (2). We now state the theorems.

THEOREM 1. If f is gACT, then
$$\lim_{n,m\to\infty} LK_{m,n}f = \Phi f$$
.

PROOF. Φ is lower-semicontinuous with respect to L_1 convergence, so by Proposition 1, $\liminf_{n,m\to\infty} LK_{n,m}f \geq \Phi f$. By (1b),

$$\begin{split} \Phi f & \leq \liminf L K_{n,m} f \leq \limsup L K_{n,m} f = \limsup \Phi K_{n,m} f \\ & \leq \Phi f + \limsup \varphi_x (K_{n,m} f - f) + \limsup \varphi_y (K_{n,m} f - f). \end{split}$$

It will be sufficient then to show (say) $\varphi_x(K_{n,m}f-f) \to 0$. Since f is gACT, $\partial f/\partial x$ is summable, where $\partial f/\partial x$ is the partial derivative with sets of measure zero neglected in the difference quotient $[G_1]$. Pick h continuously differentiable on Q such that $\|(\partial f/\partial x) - h\|_1 < \varepsilon/3$; i.e. $\varphi_x(f-H) < \varepsilon/3$ where $H(x, y) = \int_0^x h(t, y) dt$. Thus

$$\varphi_x(K_{n,m}f - f) \le \varphi_x(f - H) + V_x(H - K_{n,m}H) + V_x(K_{n,m}H - K_{n,m}f).$$

The first term is $\langle \varepsilon/3 \rangle$, and so is the second for large n and m because $(\partial K_{n,m}H/\partial x) \rightarrow (\partial H/\partial x)$, since H is C^1 . The proof of this follows from showing $|(\partial K_{n,m}/\partial x) - (\partial B_{n,m}/\partial x)|$ to be small, and then using the corresponding result for $B_{n,m}$ which is proved in [B].

For the third term, we need a lemma which holds for any summable function.

LEMMA. For F(x, y) summable on Q and all m and n, $V_xK_{n,m}F \leq \varphi_xF$ (and $V_yK_{n,m}F \leq \varphi_yF$).

PROOF.

$$V_{x}K_{n,m}F = \int_{0}^{1} \int_{0}^{1} \left| \frac{\partial K_{n,m}F}{\partial x} \right| dx dy$$

$$= n \int_{0}^{1} \int_{0}^{1} \left| \sum_{s=0}^{m} \sum_{r=0}^{n-1} (I_{r+1,s} - I_{r,s}) p_{n-1,r}(x) p_{m,s}(y) \right| dx dy$$

$$\leq n \sum_{r=0}^{n-1} \sum_{s=0}^{m} \int_{0}^{1} \int_{0}^{1} |I_{r+1,s} - I_{r,s}| p_{n-1,r}(x) p_{m,s}(y) dx dy$$

$$= \frac{1}{m+1} \sum_{r=0}^{n-1} \sum_{s=0}^{m} |I_{r+1,s} - I_{r,s}|.$$

But

$$\begin{aligned} |I_{r+1,s} - I_{r,s}| &\leq (m+1) \int_{s/(m+1)}^{(s+1)/(m+1)} (n+1) \\ & \cdot \left| \int_{(r+1)/(n+1)}^{(r+2)/(n+1)} F(\xi, \eta) \, d\xi - \int_{r/(n+1)}^{(r+1)/(n+1)} F(\xi, \eta) \, d\xi \right| d\eta \end{aligned}$$

and so

$$V_{x}K_{n,m}F \leq \int_{0}^{1} (n+1) \sum_{r=0}^{n-1} \left| \int_{(r+1)/(n+1)}^{(r+2)/(n+1)} F(\xi, \eta) d\xi - \int_{r/(n+1)}^{(r+1)/(n+1)} F(\xi, \eta) d\xi \right| d\eta$$

For almost all $\eta \in [0, 1]$, $F(\xi, \eta)$ is a summable function of ξ . For these η , the expression inside the first integral is at most $\varphi_x F(\eta)$. The proof is essentially that of (2)(b). Thus the right hand side of (3) is at most $\int_0^1 \varphi_x F(\eta) d\eta = \varphi_x F$ which completes the proof.

Now let F=H-f. F is summable, and so by the lemma

$$V_x(K_{n,m}H - K_{n,m}f) = V_x(K_{n,m}(H - f)) \le \varphi_x(H - f) < \varepsilon/3.$$

Hence $\varphi_x(K_{n,m}f-f) < \varepsilon$ for large n and m which completes the proof of Theorem 1.

For the next theorem, set $l_x f = \int_0^1 l_x f(y) dy$ where $l_x f(y)$ is the Jordan length in the x-direction of a section at y. Similarly define $l_y f$.

THEOREM 2. If f is ACT and $l_x f$ and $l_y f$ are R-integrable, then $\lim_{n,m\to\infty} LB_{n,m} f = Lf$.

PROOF. Since $B_{n,m}f \rightarrow f$ uniformly, $\lim \inf_{n,m\to\infty} LB_{n,m}f \ge Lf$. By (1a), it is sufficient to show as in Theorem 1, that (say) $V_x(B_{n,m}f-f) \rightarrow 0$. Let h and H be as in Theorem 1 with $V_x(f-H) < \varepsilon/4$. Then

$$V_x(B_{n,m}f - f) \le V_x(f - H) + V_x(H - B_{n,m}H) + V_x(B_{n,m}(H - f)).$$

The first term is at most $\varepsilon/4$, as is the second for large n and m, because $(\partial B_{n,m}H/\partial x) \rightarrow (\partial H/\partial x)$ uniformly [B]. For the third term, it is necessary to show $V_x(f-H)(y)$ is R-integrable.

Since $l_x f$ is R-integrable, $l_x f(y)$ and hence $V_x f(y)$ is bounded for $y \in [0, 1]$. Since H is C^1 , $V_x(f-H)(y)$ is bounded. In addition, $V_x(f-H)(y)$ is continuous almost everywhere. To see this, pick y_0 from the full measure set where simultaneously $f(x, y_0)$ is absolutely continuous as a function of x, and $l_x f(y)$ is continuous as a function of y. Consider a sequence $y_n \rightarrow y_0$, and correspondingly the $l_x f(y_n)$ and $l_x H(y_n)$. Since H is C^1 , $H(x, y_0)$ is an absolutely continuous function of x. By theorems in [A-L], $l_x(f-H)(y_n) \rightarrow l_x(f-H)(y_0)$ which implies $V_x(f-H)(y_n) \rightarrow V_x(f-H)(y_0)$. Thus $V_x(f-H)(y)$ is continuous at almost all y and is R-integrable.

For arbitrary F(x, y), a computation similar to the lemma shows

$$V_x B_{n,m} F \le \frac{1}{m+1} \sum_{s=0}^m V_x F\left(\frac{s}{m}\right)$$

for all n, m. Thus

(4)
$$V_x B_{n,m}(H - f) \le \frac{1}{m+1} \sum_{s=0}^m V_x (H - f) \left(\frac{s}{m}\right)$$

which converges to $V_x(H-f)$ by R-integrability of $V_x(H-f)(y)$. Hence for large m and all n, the right hand side of (4) is less than $2(\varepsilon/4) = \varepsilon/2$. For the same m and n,

$$V_x(B_{n,m}f-f) \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon,$$

and the same computation for y shows $V_{\nu}(B_{n,m}f-f)\to 0$. Therefore $\limsup LB_{n,m}f \le Lf$ which completes the proof.

REFERENCES

[A-L] C. R. Adams and H. Lewy, On convergence in length, Duke Math. J. 2 (1936), 19-26.

[B] P. Butzer, On two dimensional Bernstein polynomials, Canad. J. Math. 5 (1953), 107-113. MR 14, 641.

[G₁] C. Goffman, Lower semi-continuity and area functionals. I. The non-parametric case, Rend. Circ. Mat. Palermo (2) 2 (1953), 203-235. (1954). MR 16, 457.

 $[G_2]$ —, Two remarks on linearly continuous functions, J. Math. Mech. 16 (1967), 1227-1228. MR 37 #4214.

- [L] G. Lorentz, Bernstein polynomials, Mathematical Expositions, no. 8, Univ. of Toronto Press, Toronto, 1953. MR 15, 217.
- $[P_1]\,$ M. Price, On the variation of the Bernstein polynomials of a function of unbounded variation, Pacific J. Math. 27 (1968), 119–122. MR 38 #1441.
- [P₂] —, Kantorovitch polynomials diminish generalized length, Canad. Math. Bull. 15 (1972).

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202

Current address: Department of Mathematics, Framingham State College, Framingham, Massachusetts 01701