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AREA OF BERNSTEIN-TYPE POLYNOMIALS

MARTIN E. PRICE

Abstract. Bernstein polynomials in one variable are known to

be total-variation diminishing when compared to the approximated

function /. Here we consider the two variable case and give a

counterexample to show they are not area-diminishing. Sufficient

conditions are then given on a continuous function / to insure

convergence in area. A similar theorem is proved for Kantorovitch

polynomials in the case /is summable.

We consider the two-dimensional Bernstein polynomials Bnmf, and

the corresponding Kantorovitch polynomials Knmf, for functions

z=f(x,y) defined on the unit square Q. Sufficient conditions are given to

insure the convergence in area of these polynomials. In particular if/ is

summable and generalized absolutely continuous on Q, then LK„mf-+$f

where L is Lebesgue area, and 0 is the Cesari-Goffman generalized area;

if / is continuous and ACT, with 5-integrable Tonelli lengths, then

£5„.m/-£/.
For any/defined on all of Q,

¿W(*> y) = 2 2f (L . -)pn.Áx)pm.,(y)

where pN.R(t)=(£)f R(l - tf~R.

For summable/on Q,
n     m

Kn.mf(.x, y) = 2   HIr.Jn.r(x)Pm.,(y)
r=0 5=0

where
/*(r+l)/(n+l) /«(j+D/fm+l)

/M = (n + l)(m + 1) f(S,ri)dSdf¡.
JrHn+1) JsHm+1)

If/is continuous, 5„ m/and Knmf converge uniformly to/. Although

the behavior of Bnmf for discontinuous functions is quite erratic,
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e.g. [L, p. 28], and [PJ, we have

Proposition 1. If fis summáble on Q, Kn mf converges in the Lx sense

tof.

Proof. For all m, n, JJ JJ Kn¡mf= f¿ fj/ because $lpx.n(t) dt=
l/(/V+l) for any N and R=0, 1, • • •, N. Hence |[/i:„.m/|li^||/Hi- Choose
a continuous h such that ||/— hW^e/3. Then

11/- Kn.mfh = II/- Hi + \\« - Kn.mh\\i + \\Kn.mh - Kn,mf\W
^2\\f-h\\1+\\h-Kn.nh\\x-

Since h is continuous, the last term is also at most c/3 for large m and n,

which completes the proof.

Cesari and later Goffman have defined equivalent areas for summable

functions on Q. We give Goffman's version [GJ. Let

fc/sinfliminfLfo)
{j>t!   <-»oo

where pt are quasilinear functions converging Lx to/and the inf is tuken

over all such sequences of p{. <t> is lower semicontinuous with respect

to Lx convergence and coincides with L for continuous/.

Iff(x, y) is continuous, the linear variation for fixed y is denoted by

Vxf(y); similarly Vvf(x). Their Lebesgue integrals, the Tonelli variations

are Vxf= $1 Vxf(y)dy and Vyf=\\Vyf(x)dx. Correspondingly for
summable f(x, y), the linear generalized variations are <pxf(y) and <pyf(x)

where variation in each case is computed only over points of linear

approximate continuity. The generalized Tonelli variations are cpxf=

So «PiOO dy and <pyf=$\ q>v(x) dx. For continuous/and g,

(la) L(f+g)<Lf+Vxg+Vyg

and for summable /and g,

(lb) <!>(/ + g) Ú <¥ + <Pxg + %g-

A continuous f(x,y) is ACT if K„/and F„/are finite and /is absolutely

continuous on almost all lines parallel to each coordinate axis. A summable

/ is said to be gACT if <pxf and <pyf are finite, and there exists an /¡~g

such that h is absolutely continuous on almost all lines parallel to each

coordinate axis. Functions of gACT type may be "essentially discontin-

uous" i.e. every A~/is nowhere continuous [G2].

For finite valued/(x) on [0, 1],

Bnf(x) = Zf(-)pn,r(x)
r=0      W
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and for summable/,
n i f(r+l)/(n+l) \

Knf(x) = 2(n + v(\       m dñPn¡T(x).

Let V be total variation, <p be variation over points of approximate

continuity, / the Jordan length, and X the length over points of approxi-

mate continuity. Then for all n,

(a) VBnfi Vf,       (c) lBnf^ If,

(b)VKnf^<pf,       (d)XKnf<:Xf.

Part (a) is in [L]; (b) is in [P2]; (c) and (d) follow from (a) and (b) by

an integral-geometric formula of Cauchy and Steinhaus [P2]. In virtue

of the lower semicontinuity of V and / with respect to uniform conver-

gence, and of <p and X with respect to L1 convergence, all four functionals

converge as «-»-co. It is thus reasonable to conjecture LBnmf—>-Lf and

LKn mf-+Q>f as n, m-*oo for appropriate classes of functions.

There is a major difference in the two variable case however. Construct

a C00 "rounded spike" function fe on Q which vanishes off a circular

neighborhood Ct of (\, \) and assumes the value 1 at (£, $). By making

the spike sufficiently thin, Lfc={+s for arbitrarily small positive e.

On the other hand 52?/£=4xj(l — x)(l— y) and is independent of the base

radius rc of the spike. Hence, though fc is Cœ, LB22fe> 1 +e=Lf for some

e in contrast to the relations (2). We now state the theorems.

Theorem 1.   IffisgACT, then lim„.m_œ LKm¡nf=<!>f.

Proof.   <1> is lower-semicontinuous with respect to L1 convergence,

so by Proposition 1, lim inf^.m..^ LK„ m/^0/.

By (lb),

O/^ lim inf LKn,mf^ lim sup LKn,mf= lim sup <&Kn.mf

^ <D/+ lim sup yx(Kn,mf-f) + lim sup <py(Kn,nf -/).

It will be sufficient then to show- (say) (px(Knmf—f)-+0. Since/is gACT,

df/dx is summable, where dfjdx is the partial derivative with sets of

measure zero neglected in the difference quotient [G-¡]. Pick « con-

tinuously differentiable on Q such that ||(3//dx)—/¡||1<e/3; i.e. <px(f—H)<

e/3 where H(x, y)=$Z h(t, y) dt. Thus

<px(Kn,mf - f) < cpx(f- H) + VX(H - Kn,mH) + Vx(Kn,mH - Kn,mf).

The first term is <e/3, and so is the second for large n and m because

(dKnmH¡dx)-*(dH¡dx), since H is C1. The proof of this follows from

showing \(dKnJdx)—(dBnJdx)\ to be small, and then using the cor-

responding result for Bnm which is proved in [B].
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For the  third  term,   we  need   a   lemma   which   holds   for  any

summable function.

Lemma.   For F(x,y) summable on Q and all m and n, VxKn mF^<pxF

(and VyKn_mF^cpyF).V

Proof.

VxK^mF = f f *
Jo Jo

dKn,mF

dx
dx dy

dx dyh+l.s - Ir.,)Pn-l.r(x)Pn,s(y)
0

n—1   m    fi /•!

ni      m  n-12 2«
n—1   m    /»i /»i

= "22 IWi - 7rJ Pn-i.r(x)pm.s(y)dx dy
r=0 s=0«'0''0

n-1   m-i        n—i    m

-tt2 2iw.-u-
"1 +   1 ,=0 s=0

But
f(s+l)/(m+l)

l/rfl.. - /,J = (m + 1) (« + D
Js/(m+l)

/•(r+2)/(n+l) f(r+l)/(n+l)

F(f,>»)<íf- F(f,ij)íf
J(r+l)/(n+l) Jr/<n+l)

dr¡

and so
f 1 n-1 | f (r+2)/(n+l)

VxKn¡mF^\(n + l)2\\ F{Ç,V)dS
Jo r=0 |J(r+l)/(n+l)

/•(r+l)/(n+l)

Jr/(n+l)

dry

For almost all r¡ e [0, 1], F(f, r/) is a summable function of £. For these

r¡, the expression inside the first integral is at most <pxF(r¡). The proof is

essentially that of (2)(b). Thus the right hand side of (3) is at most

Jo 9^(77) dr\ = cpxF which completes the proof.

Now let F=H—f Fis summable, and so by the lemma

Vx(Kn,mH - Kn,mf) = Vx(Kn,m(H -/)) < <px{H -/)< e/3.

Hence cpx(Knmf—f)<e for large n and m which completes the proof of

Theorem 1.

For the next theorem, set ¡xf=)l lxf(y) dy where lxf(y) is the Jordan

length in the x-direction of a section at y. Similarly define /„/.

Theorem 2.   If f is ACT and lxf and lyf are R-integrable, then

lim«.m-.« LBn¡mf=Lf
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Proof. Since 5„.m/—/ uniformly, lim inf,,.,^ LBnimf^Lf By (la),

it is sufficient to show as in Theorem 1, that (say) Vx(Bnmf—f)-*0.

Let « and H be as in Theorem 1 with Vx(f-H)<e/4. Then

Vx(Bn.mf-f) <: Vx(f- H) + VX(H - Bn,mH) + Vx(Bn_m(H -/)).

The first term is at most e/4, as is the second for large « and m, because

(dBnimH/dx)-+(dHldx) uniformly [B]. For the third term, it is necessary

to show Vx(f—H)(y) is 5-integrable.

Since lxf is 5-integrable, lxf(y) and hence Vxf(y) is bounded for y e

[0, 1]. Since His C1, Vx(f-H)(y) is bounded. In addition, Vx(f-H)(y) is
continuous almost everywhere. To see this, pick y0 from the full measure

set where simultaneously/(x, j0) is absolutely continuous as a function

of x, and lxf(y) is continuous as a function of y. Consider a sequence

y„-*y0, and correspondingly the lxf(yn) and lxH(yn). Since H is C1,

H(x,y0) is an absolutely continuous function of x. By theorems in [A-L],

W-H)(yn)^lx(f-H)(y0) which implies Vx(f-H)(yn)^Vx(f-H)(y0).
Thus  Vx(f—H)(y) is continuous at almost all y and is 5-integrable.

For arbitrary £(x, y), a computation similar to the lemma shows

VxBn,mF^-±—2vxFÍ-\
m + 1 S>       W

for all n, m. Thus

(4) VxBn,m(H - f) ^ -^— | VX(H - f)(A
m + 1 ,=0 W

which converges to Vx(H—f) by 5-integrability of Vx(H—f)(y). Hence

for large m and all n, the right hand side of (4) is less than 2(e/4)=c/2.

For the same m and «,

Vx(Bn.mf-f)^- + -+E- = B,
4     4     2

and the same computation for y shows Vy(Bnmf—f)-*-0. Therefore

lim sup LBnmf^Lf which completes the proof.
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