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AREA OF BERNSTEIN-TYPE POLYNOMIALS

MARTIN E. PRICE

ABSTRACT. Bernstein polynomials in one variable are known to
be total-variation diminishing when compared to the approximated
function f. Here we consider the two variable case and give a
counterexample to show they are not area-diminishing. Sufficient
conditions are then given on a continuous function f to insure
convergence in area. A similar theorem is proved for Kantorovitch
polynomials in the case f is summable.

We consider the two-dimensional Bernstein polynomials B, ,,f, and
the corresponding Kantorovitch polynomials X, ,f, for functions
z=f{(x, y) defined on the unit square Q. Sufficient conditions are given to
insure the convergence in area of these polynomials. In particular if f is
summable and generalized absolutely continuous on Q, then LK, ,, f—®f
where L is Lebesgue area, and ® is the Cesari-Goffman generalized area;
if f is continuous and ACT, with R-integrable Tonelli lengths, then
LB, ,.f—Lf.

For any f defined on all of Q,

S Ser s
Bunf(9) =3 51(20 £)papm)
where py.r(t)=@tE1—1)"F,

For summable f on Q,

K, mf(x,y) = Z Z L, 3P (X)Pm.o(¥)

r=0 s=0
where

Ly=(+1)(m+1) J(&, n) d& dn.

(r+1)/(n+1) J‘(s+1)/(m+1)

r/(n+1) Js/(m+1)

If f is continuous, B, ,.f and K, ,, f converge uniformly to f. Although
the behavior of B, ,f for discontinuous functions is quite erratic,
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e.g. [L, p- 28], and [P,], we have

ProPOSITION 1. If fis summable on Q, K, ., f converges in the L, sense
tof.
Proor. For all m,n, [5 {4 K, nf=J6 fof because [5py gr(r) dt=

1/(N+1) for any N and R=0, 1, - -, N.Hence |K,, ,,fl:=[fll;- Choose
a continuous 4 such that || f—h||;<¢/3. Then

"f_ Kn.mf"l .‘S_ “f_ h“l + “h - Kn.mhul + "Kn.mh - Kn.mf"l
=2/ f— Al + |h — K, bl

Since A is continuous, the last term is also at most &/3 for large m and n,
which completes the proof.

Cesari and later Goffman have defined equivalent areas for summable
functions on Q. We give Goffman’s version [G,]. Let

®f = inflim inf L(p,)
{pi} i=o
where p; are quasilinear functions converging L, to f and the inf is tuken
over all such sequences of p,. ® is lower semicontinuous with respect
to L, convergence and coincides with L for continuous f.

If f(x, y) is continuous, the linear variation for fixed y is denoted by
V.f(y); similarly V, f(x). Their Lebesgue integrals, the Tonelli variations
are V,f=[V.f())dy and V, f=[3V,f(x)dx. Correspondingly for
summable f(x, y), the linear generalized variations are ¢, f(y) and ¢, f(x)
where variation in each case is computed only over points of linear
approximate continuity. The generalized Tonelli variations are ¢, f=
fo 9.(y) dy and @, f=} 9,(x) dx. For continuous f and g,

(12) Lf+eo=Lf+Vg+Vyg
and for summable f and g,
(1b) O+ = + 9.8 + 08

A continuous f(x, y) is ACT if V,f and V, f are finite and f is absolutely
continuous on almost all lines parallel to each coordinate axis. A summable
fis said to be gACT if ¢,f and ¢, f are finite, and there exists an h~g
such that 4 is absolutely continuous on almost all lines parallel to each
coordinate axis. Functions of gACT type may be “essentially discontin-
uous” i.e. every h~fis nowhere continuous [G,].

For finite valued f(x) on [0, 1],

B.f(x) = Zf ()2est0
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and for summable f,

k=3 o+ 0([7 7 10 de)pu,to:

=0 /(n+1)

Let V be total variation, ¢ be variation over points of approximate
continuity, / the Jordan length, and 4 the length over points of approxi-
mate continuity. Then for all ,

, @ VBV, (O BSEI,
@ ) VK.f<of, (&) AK.f< 3.

Part (a) is in [L]; (b) is in [P,]; (c) and (d) follow from (a) and (b) by
an integral-geometric formula of Cauchy and Steinhaus [P,]. In virtue
of the lower semicontinuity of ¥ and / with respect to uniform conver-
gence, and of ¢ and 4 with respect to L, convergence, all four functionals
converge as n—oo. It is thus reasonable to conjecture LB, ,, f—Lf and
LK, . f—®f as n, m—oo for appropriate classes of functions.

There is a major difference in the two variable case however. Construct
a C® “rounded spike” function f, on Q which vanishes off a circular
neighborhood C, of (}, ) and assumes the value 1 at (4, 1). By making
the spike sufficiently thin, Lf,=1+¢ for arbitrarily small positive e.
On the other hand B,, f,=4xy(1—x)(1—y) and is independent of the base
radius r, of the spike. Hence, though f, is C®, LB, f,>1+¢&=Lf, for some
¢ in contrast to the relations (2). We now state the theorems.

THEOREM 1. Iffis gACT, then lim, m_. o LK, ,f=®f.

Proor. @ is lower-semicontinuous with respect to L, convergence,
so by Proposition 1, lim inf, m_.,, LK, ,fZPf.
By (1b),

®f < liminf LK, ,,f < lim sup LK, ,,f = lim sup ®K, ,.f
= Of + lim sup @ (K, .f — f) + lim sup ¢ (K, nf — f)-

It will be sufficient then to show: (say) ¢.(K, . f—f)—0. Since fis gACT,
df/ox is summable, where 9f/ox is the partial derivative with sets of
measure zero neglected in the difference quotient [G,]. Pick % con-
tinuously differentiable on Q such that ||(9f]ox)— h|l1<s/3 ie. g (f—H)<
&/3 where H(x, y)= [ h(t, y) dt. Thus

(p:c(K‘n,mf_f) é q)z(f_ H) + Vz(H - Kn,mH) + Vz(Kn.mH - Kn.mf)'
The first term is <e/3, and so is the second for large n and m because
(0K,.,H|0x)—(0H/0x), since H is C'. The proof of this follows from

showing |(0K,,,/0x)— (0B, ,/0x)| to be small, and then using the cor-
responding result for B, ,, which is proved in [B].
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For the third term, we need a lemma which holds for any
summable function.

LemMMA. For F(x, y) summable on Q and all m and n, VK, ,,F<¢,F
(and V K, F=¢,F).

PRrROOF
0K mF

1,1
VoK mF = f j
0J0 X

11| m n=1
= nJ;J; Z Z(Ir+l.s - Ir.a)pn—l.r(x)pm,s(y) dx dy

dxdy

=0 r=0
n—-1 m ) 1 r1
$13 3 [ [ Mrsse = Il Pros 3Ipns0) dx dy
r=0 s=040JO
1 n—-1 m
=— I — I .
m + 1; SZoI r+1,8 r.sl
Dut
(s+1)/(m+1)
IIr+l.s - Ir.sl é (m + 1) (n + 1)
s/(m+1)
(r+2)/(n+1) (r+1)/(n+1)
| F(&,m) df — F(é.m) ds| dn
(r+1)/(n+1) r/(n+1)
and so
1 n=1|  (r+2)/(n+1)
VeknaF <[4 D3| " REm at
3 0 10 1 1)/ (n41)

(r+1)/(n+1)
- f F(&,m) de‘ dn

r/(n+1)

For almost all % € [0, 1], F(&, n) is a summable function of £. For these
7, the expression inside the first integral is at most @_F(%). The proof is
essentially that of (2)(b). Thus the right hand side of (3) is at most
§o 9.F(n) dn=g@,F which completes the proof.

Now let F=H—f. F is summable, and so by the lemma

Vx(Kn.mH - Kn,mf) = Va:(Kn.m(H _f)) § (pz(H _f) < 8/3

Hence ¢,(K, .f—f)<e for large n and m which completes the proof of
Theorem 1.

For the next theorem, set [, f=[} 1 f(y) dy where I f(y) is the Jordan
length in the x-direction of a section at y. Similarly define [, f.

THEOREM 2. If f is ACT and I.f and I f are R-integrable, then
lim, m—.o LB, ,f=Lf.
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PROOF. Since B, ,,/—f uniformly, lim inf, m_., LB, ,fZLf. By (1a),
it is sufficient to show as in Theorem 1, that (say) V, (B, .f—f)—0.
Let 2 and H be as in Theorem 1 with V_(f— H)<e/4. Then

Vz(Bn.mf'_f) _S_ Vz(.f— H) + Vz(H - Bn.mH) + Vz(Bn.m(H _f))

The first term is at most /4, as is the second for large » and m, because
(0B, ,H/0x)—(0H/0dx) uniformly [B]. For the third term, it is necessary
to show V,(f—H)(y) is R-integrable.

Since /,f is R-integrable, /.f(y) and hence V,f(y) is bounded for y €
[0, 1]. Since H is C*, V,(f— H)(y) is bounded. In addition, V, (f—H)(y) is
continuous almost everywhere. To see this, pick y, from the full measure
set where simultaneously f(x, y,) is absolutely continuous as a function
of x, and [, f(y) is continuous as a function of y. Consider a sequence
Ya—Yo, and correspondingly the /. f(y,) and [ H(y,). Since H is C!,
H(x, y,) is an absolutely continuous function of x. By theorems in [A-L],
L(f=H)(yu}—1.(f— H)(3)) which implies V,(f—H)(y,)=>V,(f—H)(o).
Thus V_ (f—H)(y) is continuous at almost all y and is R-integrable.

For arbitrary F(x, y), a computation similar to the lemma shows

VB,,,,,F_-—Z ,F( )

s=0
for all n, m. Thus

@ Vot =) S == S v - 1 (2)

8=0
which converges to V,(H—f) by R-integrability of V_(H—f)(y). Hence
for large m and all n, the right hand side of (4) is less than 2(¢/4)=¢/2.
For the same m and n,

B, < -—=

ViBamf/ =) 2+ 42 ,=®
and the same computation for y shows V, (B, .f—f)—0. Therefore
lim sup LB, ,, f<Lf which completes the proof.
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