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THE PROBLEM OF EIGENVALUES IN SOME SINGULAR
HOMOGENEOUS VOLTERRA INTEGRAL EQUATIONS

LL.  G.  CHAMBERS

Abstract. It is shown that when the kernel of a homogeneous

Volterra integral equation is singular, it is possible for there to be a

continuous spectrum of eigenvalues.

1. Introduction.   Consider the Volterra integral equation

(1) <Kx) = f(x) + X^K(x, y)<p(y) dy.

It is well known [1] that, if K is continuous or weakly singular, the power

series expression in X for the resolvent is convergent for all X, and that,

consequently, the homogeneous Volterra equation

(2) <Kx) = xj*K(x,y)<Ky)dy

does not possess any eigenvalues. What does not seem to be well known,

[2] however, is that there can be, under certain conditions, a continuous

eigenvalue spectrum when the kernel is singular.

This can be shown by a very simple example. From the result

(3) xn - n i V"1 dy       (Re(n) > 0)
Jo

it follows that a solution of the Volterra type integral equation

(4) <Kx) = AJV1 exp{x - y } <Ky) dy

with the singular kernel x'1 exp{x—y} is

(5) ¿B(x) = exp(x)x»-1       (Re(n) > 0)

which has associated with it the eigenvalue n. There is thus a continuous

spectrum of eigenvalues for the integral equation (4). An alternative
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representation of (4) would be given by writing x<f>(x)=f(x), giving

(6) y<x) = X\  y"1 exp{x - y}xp(y)dy.
Jo

In this case the kernel y-1 exp{x— y) is still singular.

2. Analysis.   Consider now the Volterra type integral equation

(7) a(x)<üx) = X^m(x,y)<Üy)dy

the kernel of which is {a(x)}~1m(x, y). Suppose now that m(x, y) is of the

form m(x— y). This will simplify the analysis somewhat, but does not

affect the ideas involved. Suppose that

OU

(8) a(x) = 2 °sxs+°,
s=0

(9) m(x) = £ msxs+",
s=0

and look for a solution of the form

(10) <f>(x) = J <f>sx°+t,
s=0

x and p are known, f is to be determined. Obviously a0, m0, r/>0 are nonzero.

Equation (7) can now be rewritten in the form

J asX°+< 2 W+î = *i*ï ms(x - y)«*1 S ¿,xí+f dx
s=0 s=0 Jo   s=0 (=0

which simplifies further to

fx^^2as_A
=o

= X 2 J xs+í+"+í+1ms& ['(I - Z)5+"Z<+i dZ
s=0  r=0 «"O

= X J 2 xs+í+"+í+V<M(s + /i + 1, í + S + D
s=0  (=0

= X 2 xs+"+í+l2 ™s-,<r\B(s - í + A» + 1, í + £ + D-
s=0 1=0

It will be noted that for the integrals to converge, it is necessary that

Re(Ai+l) and Re(£+1) should be positive. In order that the leading term

of both series be the same, it follows that a+|=/i+f+l, which implies

that a=/u+1. (Although apparently a possible solution would be given by

s=0 t=0

(id s:° r
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oL—p—l being equal to an integer N, it can easily be seen that this would

imply <f>s vanishing for s<Nand so is irrelevant.) Equation (7) now assumes

the form

(12) J xs 2 as_t<t>t = A J xs 2 ms_¿tB(s -r + A, + l,í + f + l)
s=0        í=0 s=0        i=0

as x*+* cancels. It follows from equation (12) that

(13) 2 («»-* - *ms-tB(s -t + p + l,t + i + l))<f>t = 0,       s = 0.
i=0

The eigenvalue is determined by taking the case 5=0. This gives

(14) a0 - XmoB(p + 1, £ + 1) - 0

or

(15) X = a0l{moB(p + 1, £ + 1)}.

Now f is not defined, save by the convergency condition referred to

previously, and so it follows that the spectrum of X as given by equation

(15) is continuous. The set of equations (13) can, using (15), be rewritten as

,in     vT       »wofifr-* + /« + i,i + g + in ,    n
(i6)     2 a*-t-„,  , « t. »-^< = °-

ttS L moBijU + 1,|+1) J

The set of equations (16) gives recurrence relations for <f>s in terms of

<t>s-D ' ' ' . «£<>• (It can easily be verified that the coefficient of <f>„ does not

vanish in (16) when s=n.) It will be noted that the <f>s are in fact functions

of £. Thus the sum of the series

(17) 2 ^)xs+K
s=0

where the <ps(£) are defined by equation (16) is, if it converges, and if

Re(|+1) is positive, an eigenfunction for the integral equation (7), the

corresponding eigenvalue being given by equation (15).
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