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NONLINEAR INTEGRAL EQUATIONS
IN A MEASURE SPACE

P.  C.  DAS

Abstract. An abstract nonlinear integral equation is formu-

lated in a measure space and existence, uniqueness of its solution

is proved. It is shown that it includes as particular cases certain

classes of integral equations and also differential equations con-

taining measures.

This is an attempt towards defining a notion for the solutions of an

equation which is an abstract formulation of a class of nonlinear integral

equations and to study the existence of a solution of that equation in a

sense to be defined.

In §1, we consider this abstract formulation and give an existence

theorem for the solution. In §2, a link between these equations and equa-

tions from which this abstraction was made is established. It is to be noted

that differential equations containing measures considered in [1], [2],

[4], [6] and their abstraction in [5] from the point of view of existence of

solutions are particular cases of the class of equations considered here.

The whole idea in this abstraction is to free the differential and integral

equations of implicit Cartesian co-ordinate system.

1. Let (X, S, ¡j) be a a-finite measure space. Let E* e S and let A

denote the space of all real valued signed measures defined on E*C\S. Let

AE={X e A\X(F)=X(Er\F)} for each È=E*nS. AE, and in particular A,
is a Banach space with total variation norm [3]. L(E, /j,) will denote the

space of integrable w.r.t. ¡x functions mapping EtoR and L(n), the space

of integrable with respect to ¡i functions mapping E* to R.

Let G be a subclass of sets of S contained in E* such that [j (A\A eG)=

E* and G generates the c-algebra E* C\S on E*. We assume further that

restriction of every real signed measure on E*nS to G has a unique c-

additive extension to the a-algebra E* C\S.

We shall term such a class of sets "g-class" for the measurable space

(£*,£* DS). Now AE(G)={X\X is a real signed measure on G and its

extension belongs to AE} is a Banach space with total variation norm

where the total variation of an element is calculated for its extension in AF.
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Now we consider the following equation

(1) X(E) = v(E) + ¡      f(x,kx)dp,
JE-Eo

where veA;kx:AxX->-R;f:XxR-*R;E0eG.
Definition. A real signed measure Â defined on £ e G, is said to be

a solution of (1) in £ if I satisfies the equation (1) for all £ e G d E^E.

For this purpose Ä(£)=Ä(£ n£) for £ e £* nS.

Now we are in a position to establish some theorems concerning the

existence of solutions of equation (1). Let AE(G)<= AE(G) denote the set

of all finite signed measures in AE(G) for which VE_E¡¡(k—v)^a, where

"Ve-e,," denotes the variation over the measurable set £—£0. By AEa(G)

we shall denote the set of all real signed measures from AaE(G) which coin-

cide with v on £0 nG. It is easily seen that AEa(G) is a closed subset of the

Banach space AE(G).

Theorem 1 (Local existence). Let f be such that f(x, Xx) is measur-

able for each fixed A, in the set AEa.(G), and there exists an integrable func-

tion U in E* satisfying \f(x, ?.x)\^U(x) (for all A € AEa.(G)). Suppose also

that there exists a constant N such that

\f(x, Ä*) - f(x, Ax)| ̂  NVE._Eo(J. - X)   for I A e ANEa.(G).

Finally, let there exist a set EeG such that jE_E U(x) dp^a and

Np(E—E0)<l. Then there exists a unique solution of the equation (1) on Ë.

Remark 1. The last condition is automatically satisfied if the measure

is nonatomic or if the atoms are sufficiently small.

Proof. It is trivial to see that A^a(G) is a closed subset of the Banach

space AE(G) with total variation norm. We denote by T the following

mapping from A|°(c7)->-A£(C7)

(TX)(E) = v(E) + Í      f(x, Xx) dp.
JE-Eo

The mapping is well defined on A^°(G). Now we verify that T maps

Ae"(G) into itself.
(TX)(E)=v(E) for EeG,E<= E0 and consequently for E e S and £ e £0.

Further

Ve-Eo(T* - ") = VB-E°(J£_E/(X> A*) 4")

^i     \f(x, Xx)\ dp <: f      U(x)dp£a.
JE-Eo JE-Eo

T is also a contraction.

(TA1 - TX")(E) = f      (f(x, XI) - f(x, XI)) dp.
JE-Eo
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Hence

V^TX1 - TX2) ̂ f      |/(x,Xx) -f(x,Xx)\dfi rg f      NVE_E^ - X2)dp.
JË-Eo JË-Eo

= Nfi(E-E0)V£_Eo(X1-X2),

or WTX^-TX^^k^-X2]] where â:=/v>(£-£0)<1. So T has a fixed

point which is the required solution and the solution is unique.

2. In the following, we show that the above abstract equation has the

following systems of equations as special cases.

(2) x(î) = «(f) + jj (s, £/c(s, f, x(|)) dij dg(s),

where « is a function of bounded variation in [r0, fj, g is a right con-

tinuous monotonie increasing function/:R2->-R, and k:R3-*R.

(3) x(t) = h(t) + Çf(s,x(s))dg(s),

with h,f, g as above.

(4) X(E) = Ao(£) + f      f(Xl, x2, Xx    ) dXl dx2,
JE-Eo l

where £ is a Borel measurable set in R2 (Euclidean plane), and XXi_Xi:

A2 x R2->-R, where A2 denotes the class of real signed measures defined

on Borel sets of R2.

Lastly, the equation (1), also includes the equation considered in [5]

as a particular case where £*=5f in the notation of (5) and XX=X(SX),

a particular case of the mapping considered here. We verify our statement

for the equation (1) only and others are similarly verified.

Consider E*=[t0,t1], £„=0, ¡i is the Lebesgue-Stieltjes measure

generated by a right continuous monotonie function defined on [/0, fj.

We have the equation

Jto     \   Jto
x(t) = h(t) +    / s    k(s, Ç, x(£)) df   dg(s).

We see that the class of sets £={[/<,, t]:t e [t0, tj]} is a "g-class". S(F),

the o--ring generated by F, is precisely the class of Borel sets of [?0, fj.

It is also easily verified that a real signed measure defined on the Borel

sets [in, ?j] restricted to £ has a unique cr-additive extension to the Borel

sets of [i0, tx]. We note that we can consider [f0, oo) instead of [t0, tx].
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Now let the equation (2) have a solution x of bounded variation. Then,

x(t) - x(t0) = h(t) - x(t0)

+j*f (s, j°k(s, f, x(|) - x(i0) + x(f0))d¿} dg(s),

where k(s, £, y)=0 for £>s. Every function of bounded variation y(t) on

[/0, ix] defines uniquely a signed measure A on the Borel sets of [í0, fx] with

^(['o> t])=y(t)—y(t0). So we rewrite the equation (5) as

f/(s,A([í0,í]) = r([í0,í])+    /(U.)dg(s)
Jio

where v([t0, t])=h(t)—x(t0)=h(t)—h(t0) (taking into account the right

continuity of g) and

As = ¡Sk(s, f, A([i0,1]) + fc(i0)) df.
Jto

Hence writing £= [f0, r], £0= 0 , we have the following equation

A(£) = v(E) + f      /(s,¿.)dg(s),   or

(6) ^
A(£) = v(£)+ f{s,XJdp,

JE-Eo

putting dp=dg(s). Thus every solution of (2) leads to a solution (6) which

is an equation of the class (1).

Conversely if (6) has a solution, the steps can be retraced back and we

get a solution of equation (2).

In fact we can formulate the following theorem for equation (2) for the

existence of its solution. By b.v. we denote "bounded variation".

Theorem 2.    Let h be b.v. function in [/„, rx], and

fit, jV,f,*(D)df)

be measurable, for each function x of b.v. belonging to the set P=

{yl^t^x—h)^a}. Suppose also that there exists an integrable function U

and a constant L such that

\f(t, Ck(t,C,x(C))d¿\ 1/(0;

\k(t, £ x(f)) - k(t, f, Xl))l ̂  L |x(|) - y(i)\,
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for each x, ye P. Let \f(t, p)—f(t, q)\^M~\p—q\ where

p,qeQ = ¡y(t) | y(t) = f k(t, £, x(|)) df, with x e pi

Finally, let there exist a tt such that

llU(t)dg(t)^a   and   LM(g(tx) - g(t0))< 1.fJtoI to

Then there exists a solution in [t0, ti\ for the equation (2).

Here, by a solution, we mean a function of bounded variation satisfying

equation (2). We consider the equation (6), instead of equation (2). For

equation (6) all the conditions of Theorem 1 are verified by maintaining

a and U as such and putting LM=N. In fact,

\f(s,Xs)-f(s,Xs)\

= 1/ L pk\s, f, x(|)) dij - f (s, pJE(i, Í, x(0)) di

^ M I fSfe(s, |, x(f)) df - \'k(s, |, x(f)) dfI
IJto Jto

^ M ¡)k(s, f, x(f)) - k(s, I, x(|))| dí ^ ML f|x(i) - x(|)| df.

Since x and x 6 A^"t.](G), we have x(i0)=x(/0)=«(/0) and hence,

|x(f) - x(f)| ̂  FJi(i - x) - F;j(^ - *)•

So |/(i, Äs)-/(j, As)|^MLFi;_Eo(Ä-A) in the notation of Theorem 1.
Hence, Theorem 2 follows from Theorem 1.

Finally, the author thanks the referee for helpful comments.
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