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PRIME IDEALS IN UNIFORM ALGEBRAS

WILLIAM E. DIETRICH, JR.

Abstract.   A uniform algebra on a compact metric space has

infinite Krull dimension and exactly 2C nonmaximal prime ideals.

A subalgebra of the continuous, complex-valued functions C(X) on a

compact Hausdorff space X which separates the points of X, contains the

constant functions and is closed in the uniform norm || \\„ is called a

uniform algebra. This topic has been elaborated for more than two decades

(e.g. [4]), but with little attention to algebraic questions. In the classical

disc algebra, for example, 0 is a prime ideal and no nonzero prime ideal

can lie properly in any maximal ideal determined by an interior point of

the disc: does the disc algebra even have a nonzero, nonmaximal prime?

An interpolation method used here implies that each boundary maximal

ideal will contain 2C such ideals, arranged in 2C nonoverlapping infinite

chains [Theorem 1]. Even more, every uniform algebra on a first count-

able space has at least one maximal ideal with this property [Theorem 2];

in particular, its Krull dimension is infinite.

For a subset B of a uniform algebra A, let Z(B) stand for the set of

common zeros of the functions in B and for/» e X, let /„ denote the maxi-

mal ideal of functions in A which vanish at p. Denote the Choquet bound-

ary of A by dA [1, p. 81].

Theorem 1. Suppose A is a uniform algebra and J is an ideal of A. If

p is a peak point for A which is not isolated in Z(J)C\dA, there are 2C pairwise

disjoint, infinite ascending chains of prime ideals of A with each prime

containing J and densely contained in IP. In particular, krull dim A/J= oo.

Proof. Choose/e/1 with/(/?)=l and |/(;t)|<l if x^p. Inductively

select pneZ(J)C\dA so that |1-/(/»„)|<min{l/n, |l-/(/>„_i)|}. p is the

only possible accumulation point q of the set {pn}. For f(q) is an accumu-

lation point of the distinct points {/(/?„)}; since /(/O-*!* /(?)=1 so

actually q—p. Thus K={pn}u{p} is compact,/is a homeomorphism of K

onto f(K) and pn-*p.
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A\K is dense in C(K). Take a Borel measure ¡j. on K which annihilates

A\K; since f-*Xw boundedly, 0=$Kfn dfi->[i({p}). Also because pn-*p,

each/>„ has a neighborhood V„ which misses K—{pn}; since/>„ is a strong

boundary point of A [1, 2.3.4], there is some kneA with ||fcJL = l =

kn(pn) and |fc„|<l off Vn. Given any e>0 we can take a high enough

power of kn to obtain some gne A with gn(pn)=1 and |g„| <£ on £— {/>„}.

=      g. •
\Jk

è IMW)I - « Hi«II,diA

and letting £->-0 we see that /¿({p„})=0. Thus

|/i| (*) = IM{/»»I + 21/»C0*-»1 - 0;
7!=1

by the Hahn-Banach theorem, A\K is dense in C(Ä).

K is a closed set which is a countable union of peak points in the weak

sense, so that Glicksberg's peak set theorem [4, II. 12.7, p. 58] implies K

is an intersection of peak sets. Thus A\K is closed in C(K); in fact then,

A\K=C(K).
K is homeomorphic to Nx, the one point compactification of the

natural numbers, and composing the induced isomorphism C(K)^C(Nœ)

with restriction A->C(K), we obtain an algebra homomorphism 4> of

A onto C(NX) such that/<= ker O and 0(/P)=Mx={fe C(NJ :/(oo)=0}.

According to [5, 14G, p. 213] there are 2C maximal chains of prime ideals

of Cr(Nx) [the real-valued continuous functions on Nx] contained in

Mrx=Mœ CiCr(Nœ), and any two chains have only Mrœ in common. For

any such chain <g, set ^*={^>~1(P+iP):P g c€, PjíM^}. Since P-+P+ÍP

is a lattice preserving one-to-one correspondence between the primes of

CT(NX) and those of C(N„) [3, 1.1], c€* is a chain of prime ideals of A

contained in O-1(Ai00)=/J, and containing /; plainly if 3¡* is any other

such chain, 3>*(~\<ë* = 0. Each chain #* is infinite ascending since

P-*-í>-1(P+/P) is a lattice preserving bijection and # is infinite ascending.

For otherwise there is some largest Pe^ properly contained in Mr„

and because # is maximal, there is no prime ideal of CT(NX) strictly

between P and M„ : a violation of [2, 3.2, p. 71].

Finally each Q e <ê* is dense in /„. Indeed the prime P=Q>(Q) is dense

in Mv [2, 1.5, 1.8]: given/e/„ there are gneP with \\gn-®(f)\\œ^0.

Since K is a peak interpolation set, there are hneA with ||AJ|.x=

fl*.-*(/)IL   and   ®(hn)=gn-<!>(f).   Thus   hn+f e <&-\P)=Q   and

Of course none of the nonmaximal primes constructed above is closed.

This is to be expected since in the disc algebra, for example, Rudin's
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characterization of the closed ideals [6, p. 85] implies that 0 is the only

nonmaximal closed prime.

In practice a uniform algebra may only have peak points isolated in

its Silov boundary, or because no point has a countable neighborhood

base, even none at all. Nevertheless we have

Theorem 2. A uniform algebra A on an infinite first countable space X

has a maximal ideal which contains 2C pairwise disjoint infinite chains of

prime ideals.
v

Proof. Suppose dA is a discrete subspace of the Silov boundary T

of A. Then each/? 6 dA is a peak point [1, 2.3.1] which is open in V: if/

peaks at p, fn->-X{v} uniformly on T so \—%{p)eA peaks (in T) on

T—{p}. Since T is infinite [otherwise /i_^|r is finite-dimensional and

because A separates point, X is finite], !F={Y—F:F<=dA finite} is a

family of nonvoid closed subsets of T with the finite intersection property,

so P=f) & is a generalized peak set for A\V. By a theorem of Bishop

[1, 2.4.6, p. 105] P contains a generalized peak point pedA\Y=dA.
Thus p e T—{/?}, a contradiction.

We conclude that dA contains a point/? nonisolated in dA.p is a peak

point which is the limit of an infinite sequence on dA ; the result follows

from the proof of Theorem 1 with 7=0.

Notice if X is actually metric (and hence separable), A will have

cardinality c, so that Theorem 2 implies

Corollary 1. A uniform algebra on an infinite metric space has in-

finite Krull dimension and exactly 2C nonmaximal prime ideals.

The following answers a question of M. Weiss [8, p. 94].

Corollary 2. In a uniform algebra on an infinite first countable space,

not every finitely generated ideal is principal.

Proof. Otherwise, the primes contained in a fixed maximal ideal form

a chain [5, 14L, p. 214] in violation of Theorem 2.

Example. Hœ, the bounded analytic functions on the open unit disc A,

considered as a uniform algebra on its maximal ideal space M has no peak

points and no point of M—A has a countable neighborhood base:

Theorems 1 and 2 do not apply. Nonetheless, suppose q e M—A. lies in the

closure of a Carleson-Newman interpolating sequence 5<= A: Hx\S=l'x' =

C*(S). Then cl S is homeomorphic to ßS, the Stone-Cech conpactification

of S [6, p. 205], so that actually Hx\ßS=C(ßS). Since S is realcompact,

there is some/e Cr(ßS) mthf(q)=0 and |/| >0 on S [5, p. 119]./cannot

vanish on any neighborhood of q and assuming the continuum hypothesis,

it follows that the maximal ideal M„ of Cr(ßX) determined by q contains a
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chain of at least 2e prime ideals [5, 14.19, p. 204]. Because restriction is a

homomorphism of Hm onto C(ßS) which takes /„ onto Ma+iMQ, Iq con-

tains a chain of 2C prime ideals of //°° ; in particular, krull dim FT" = co.

Although interpolating sequences exist in profusion [6, p. 204], not

every q e M—A lies in the closure of such a set; in fact Hoffman has

shown this happens exactly when the Gleason part for q is nontrivial

[7, 5.5, p. 101]. Since Hœ is logmodular on the maximal ideal space X

of L°°, each point of X is a one point part; and there are others [4,

Example 3, p. 162]. The prime structure at these points is not known,

but things are clear elsewhere: if q e A, a routine order of zero argument

shows that 0 is the only nonmaximal prime of Hœ in IQ=(z—q)Hx;

if q e M—A has a nontrivial part, /„ contains exactly 2C nonmaximal

primes. Indeed, Carleson's corona theorem makes M separable, so that

Hx has cardinality c: even Hm has exactly 2C nonmaximal primes.

For |A| = 1 the fiber Mx={<f> e M:<f>(z)—X} is a peak set for Hœ, so that
Ax=Hco\Mx is a uniform algebra. There is an embedding ip:A-+Mx so

that Ax\y)(A)^H'x' [6, p. 168], and the composite Ax-*Ax\ip(A)-^Ha>^

C(ßS) makes C(ßS) a homomorphic image of Ax. Therefore Ax will also

contain exactly 2C nonmaximal prime ideals and will have infinite Krull

dimension.
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