PRIME IDEALS IN UNIFORM ALGEBRAS

WILLIAM E. DIETRICH, JR.

ABSTRACT. A uniform algebra on a compact metric space has infinite Krull dimension and exactly 2^c nonmaximal prime ideals.

A subalgebra of the continuous, complex-valued functions C(X) on a compact Hausdorff space X which separates the points of X, contains the constant functions and is closed in the uniform norm $\| \|_{\infty}$ is called a uniform algebra. This topic has been elaborated for more than two decades (e.g. [4]), but with little attention to algebraic questions. In the classical disc algebra, for example, 0 is a prime ideal and no nonzero prime ideal can lie properly in any maximal ideal determined by an interior point of the disc: does the disc algebra even have a nonzero, nonmaximal prime? An interpolation method used here implies that each boundary maximal ideal will contain 2^c such ideals, arranged in 2^c nonoverlapping infinite chains [Theorem 1]. Even more, every uniform algebra on a first countable space has at least one maximal ideal with this property [Theorem 2]; in particular, its Krull dimension is infinite.

For a subset B of a uniform algebra A, let Z(B) stand for the set of common zeros of the functions in B and for $p \in X$, let I_p denote the maximal ideal of functions in A which vanish at p. Denote the Choquet boundary of A by ∂A [1, p. 81].

THEOREM 1. Suppose A is a uniform algebra and J is an ideal of A. If p is a peak point for A which is not isolated in $Z(J) \cap \partial A$, there are 2° pairwise disjoint, infinite ascending chains of prime ideals of A with each prime containing J and densely contained in I_n . In particular, krull dim $A/J = \infty$.

PROOF. Choose $f \in A$ with f(p)=1 and |f(x)|<1 if $x \neq p$. Inductively select $p_n \in Z(J) \cap \partial A$ so that $|1-f(p_n)|<\min\{1/n, |1-f(p_{n-1})|\}$. p is the only possible accumulation point q of the set $\{p_n\}$. For f(q) is an accumulation point of the distinct points $\{f(p_n)\}$; since $f(p_n) \to 1$, f(q)=1 so actually q=p. Thus $K=\{p_n\} \cup \{p\}$ is compact, f is a homeomorphism of K onto f(K) and $p_n \to p$.

Received by the editors December 26, 1972 and, in revised form, April 27, 1973. AMS (MOS) subject classifications (1970). Primary 46J10, 46J20; Secondary 16A12. Key words and phrases. Prime ideal, uniform algebra, peak point, Choquet boundary, interpolating sequence.

A|K is dense in C(K). Take a Borel measure μ on K which annihilates A|K; since $f^n \rightarrow \chi_{\{p\}}$ boundedly, $0 = \int_K f^n d\mu \rightarrow \mu(\{p\})$. Also because $p_n \rightarrow p$, each p_n has a neighborhood V_n which misses $K - \{p_n\}$; since p_n is a strong boundary point of A [1, 2.3.4], there is some $k_n \in A$ with $||k_n||_{\infty} = 1 = k_n(p_n)$ and $|k_n| < 1$ off V_n . Given any $\varepsilon > 0$ we can take a high enough power of k_n to obtain some $g_n \in A$ with $g_n(p_n) = 1$ and $|g_n| < \varepsilon$ on $K - \{p_n\}$.

$$0 = \left| \int_{K} g_n \, d\mu \right| \ge |\mu(\{p_n\})| - \varepsilon \, \|\mu\|,$$

and letting $\varepsilon \rightarrow 0$ we see that $\mu(\{p_n\}) = 0$. Thus

$$|\mu|(K) = |\mu(\{p\})| + \sum_{n=1}^{\infty} |\mu(\{p_n\})| = 0;$$

by the Hahn-Banach theorem, A|K is dense in C(K).

K is a closed set which is a countable union of peak points in the weak sense, so that Glicksberg's peak set theorem [4, II. 12.7, p. 58] implies K is an intersection of peak sets. Thus A|K is closed in C(K); in fact then, A|K=C(K).

K is homeomorphic to N_{∞} , the one point compactification of the natural numbers, and composing the induced isomorphism $C(K) \cong C(N_{\infty})$ with restriction $A \rightarrow C(K)$, we obtain an algebra homomorphism Φ of A onto $C(N_{\infty})$ such that $J \subset \ker \Phi$ and $\Phi(I_p) = M_{\infty} = \{ f \in C(N_{\infty}) : f(\infty) = 0 \}$. According to [5, 14G, p. 213] there are 2^c maximal chains of prime ideals of $C_r(N_{\infty})$ [the real-valued continuous functions on N_{∞}] contained in $M_{\infty}^r = M_{\infty} \cap C_r(N_{\infty})$, and any two chains have only M_{∞}^r in common. For any such chain \mathscr{C} , set $\mathscr{C}^* = \{\Phi^{-1}(P+iP): P \in \mathscr{C}, P \neq M_{\infty}^{\tau}\}$. Since $P \rightarrow P + iP$ is a lattice preserving one-to-one correspondence between the primes of $C_r(N_\infty)$ and those of $C(N_\infty)$ [3, 1.1], \mathscr{C}^* is a chain of prime ideals of A contained in $\Phi^{-1}(M_{\infty})=I_{p}$ and containing J; plainly if \mathscr{D}^{*} is any other such chain, $\mathscr{D}^* \cap \mathscr{C}^* = \varnothing$. Each chain \mathscr{C}^* is infinite ascending since $P \rightarrow \Phi^{-1}(P+iP)$ is a lattice preserving bijection and \mathscr{C} is infinite ascending. For otherwise there is some largest $P \in \mathscr{C}$ properly contained in M_{∞}^{r} and because \mathscr{C} is maximal, there is no prime ideal of $C_r(N_{\infty})$ strictly between P and M_{∞}^{r} : a violation of [2, 3.2, p. 71].

Finally each $Q \in \mathscr{C}^*$ is dense in I_p . Indeed the prime $P = \Phi(Q)$ is dense in M_p [2, 1.5, 1.8]: given $f \in I_p$, there are $g_n \in P$ with $\|g_n - \Phi(f)\|_{\infty} \to 0$. Since K is a peak interpolation set, there are $h_n \in A$ with $\|h_n\|_{X} = \|g_n - \Phi(f)\|_{\infty}$ and $\Phi(h_n) = g_n - \Phi(f)$. Thus $h_n + f \in \Phi^{-1}(P) = Q$ and $\|h_n + f - f\|_{X} \to 0$.

Of course none of the nonmaximal primes constructed above is closed. This is to be expected since in the disc algebra, for example, Rudin's

characterization of the closed ideals [6, p. 85] implies that 0 is the only nonmaximal closed prime.

In practice a uniform algebra may only have peak points isolated in its Šilov boundary, or because no point has a countable neighborhood base, even none at all. Nevertheless we have

THEOREM 2. A uniform algebra A on an infinite first countable space X has a maximal ideal which contains 2° pairwise disjoint infinite chains of prime ideals.

PROOF. Suppose ∂A is a discrete subspace of the Šilov boundary Γ of A. Then each $p \in \partial A$ is a peak point [1, 2.3.1] which is open in Γ : if f peaks at p, $f^n \rightarrow \chi_{\{p\}}$ uniformly on Γ so $1 - \chi_{\{p\}} \in A$ peaks (in Γ) on $\Gamma - \{p\}$. Since Γ is infinite [otherwise $A \cong A | \Gamma$ is finite-dimensional and because A separates point, X is finite], $\mathscr{F} = \{\Gamma - F : F \subset \partial A \text{ finite}\}$ is a family of nonvoid closed subsets of Γ with the finite intersection property, so $P = \bigcap \mathscr{F}$ is a generalized peak set for $A | \Gamma$. By a theorem of Bishop [1, 2.4.6, p. 105] P contains a generalized peak point $p \in \partial A | \Gamma = \partial A$. Thus $p \in \Gamma - \{p\}$, a contradiction.

We conclude that ∂A contains a point p nonisolated in ∂A . p is a peak point which is the limit of an infinite sequence on ∂A ; the result follows from the proof of Theorem 1 with J=0.

Notice if X is actually metric (and hence separable), A will have cardinality c, so that Theorem 2 implies

COROLLARY 1. A uniform algebra on an infinite metric space has infinite Krull dimension and exactly 2° nonmaximal prime ideals.

The following answers a question of M. Weiss [8, p. 94].

COROLLARY 2. In a uniform algebra on an infinite first countable space, not every finitely generated ideal is principal.

PROOF. Otherwise, the primes contained in a fixed maximal ideal form a chain [5, 14L, p. 214] in violation of Theorem 2.

EXAMPLE. H^{∞} , the bounded analytic functions on the open unit disc Δ , considered as a uniform algebra on its maximal ideal space M has no peak points and no point of $M-\Delta$ has a countable neighborhood base: Theorems 1 and 2 do not apply. Nonetheless, suppose $q \in M-\Delta$ lies in the closure of a Carleson-Newman interpolating sequence $S \subset \Delta$: $H^{\infty}|S=l^{\infty}=C^*(S)$. Then cl S is homeomorphic to βS , the Stone-Čech conpactification of S [6, p. 205], so that actually $H^{\infty}|\beta S=C(\beta S)$. Since S is realcompact, there is some $f \in C_r(\beta S)$ with f(q)=0 and |f|>0 on S [5, p. 119]. f cannot vanish on any neighborhood of q and assuming the continuum hypothesis, it follows that the maximal ideal M_q of $C_r(\beta X)$ determined by q contains a

chain of at least 2^c prime ideals [5, 14.19, p. 204]. Because restriction is a homomorphism of H^{∞} onto $C(\beta S)$ which takes I_q onto $M_q + iM_q$, I_q contains a chain of 2^c prime ideals of H^{∞} ; in particular, krull dim $H^{\infty} = \infty$.

Although interpolating sequences exist in profusion [6, p. 204], not every $q \in M - \Delta$ lies in the closure of such a set; in fact Hoffman has shown this happens exactly when the Gleason part for q is nontrivial [7, 5.5, p. 101]. Since H^{∞} is logmodular on the maximal ideal space X of L^{∞} , each point of X is a one point part; and there are others [4, Example 3, p. 162]. The prime structure at these points is not known, but things are clear elsewhere: if $q \in \Delta$, a routine order of zero argument shows that 0 is the only nonmaximal prime of H^{∞} in $I_q = (z-q)H^{\infty}$; if $q \in M - \Delta$ has a nontrivial part, I_q contains exactly 2^c nonmaximal primes. Indeed, Carleson's corona theorem makes M separable, so that H^{∞} has cardinality c: even H^{∞} has exactly 2^c nonmaximal primes.

For $|\lambda|=1$ the fiber $M_{\lambda}=\{\phi\in M:\phi(z)=\lambda\}$ is a peak set for H^{∞} , so that $A_{\lambda}=H^{\infty}|M_{\lambda}$ is a uniform algebra. There is an embedding $\psi:\Delta\to M_{\lambda}$ so that $A_{\lambda}|\psi(\Delta)\cong H^{\infty}$ [6, p. 168], and the composite $A_{\lambda}\to A_{\lambda}|\psi(\Delta)\to H^{\infty}\to C(\beta S)$ makes $C(\beta S)$ a homomorphic image of A_{λ} . Therefore A_{λ} will also contain exactly 2^c nonmaximal prime ideals and will have infinite Krull dimension.

REFERENCES

- 1. A. Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431.
- 2. W. Dietrich, On the ideal structure of C(X), Trans. Amer. Math. Soc. 152 (1970), 61-77. MR 42 #850.
- 3. —, Ideals in convolution algebras on Abelian groups, Pacific J. Math. (to appear).
 - 4. T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 5. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 6. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 #A2844.
- 7. ———, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74-111. MR 35 #5945.
- 8. M. Weiss, Some separation properties in sup-norm algebras of continuous functions, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 93-97. MR 33 #1756.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712