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ABSOLUTE CONTINUITY OF EIGENVECTORS
OF TIME-VARYING OPERATORS

ANDREW F. ACKER!

ABSTRACT. If K(¢) is a compact, selfadjoint operator function
of a real variable 7 with distinct eigenvalues at each 7, we show that
the eigenvalues and eigenvectors are absolutely continuous and that
{K(#)} is a commuting set provided that K(t) commutes with its
time derivative K’(¢) at each . The distinct eigenvalue condition is
shown to be necessary.

1. Introduction. Let H be a real Hilbert space, i.e. the inner product
on H is real valued. Let K(z): H—H be a compact linear operator for
each ¢ in a closed real interval J, and assume K{(#) is absolutely continuous
in the operator norm on J. We will prove the following:

THEOREM 1. Assume A(t) is a distinct (at each t € J), absolutely con-
tinuous eigenvalue function of K(t) on J, and let ¢(t) be a corresponding
normalized eigenvector function. Then @(t) can be chosen absolutely
continuous on J.

This result can be used inductively in connection with the usual spectral
theory for compact, selfadjoint operators to prove the following:

THEOREM 2. Assume K(t) is selfadjoint and has only distinct, nonzero
eigenvalues at each t € J. Then there is a sequence of absolutely continuous
(on J) eigenvalue and (corresponding, normalized) eigenvector functions:
{4.(2), 9,(t)}, which include the spectrum of K(t) at each t, and

KOx =S L,(0)e.(0)@.(), )  (xeHand teJ).
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! This problem occurred in connection with the problem of factoring unbounded
operator functions during my doctoral research at Boston University, 1971. I wish
to thank Professor Marvin I. Freedman for helpful suggestions.
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The results concerning continuity of eigenvalues and eigenvectors
have a natural application to perturbation methods. Also Theorem 2
may be used to prove:

THEOREM 3. Let K(t) be selfadjoint and have only distinct, nonzero
eigenvalues in J. Assume K(t) commutes with its derivative K'(t) almost
everywhere in J. Then {K(1)|t € J} is a commuting set.

All the theorems can be extended to corresponding theorems for un-
bounded operator functions which have a compact inverse for each ¢ € J.
Theorems similar to 2 and 3 are proven for a square matrix function K(r)
which is not selfadjoint (and can have the eigenvalue 0) in A. Acker [1].
An example in §4 shows the distinct eigenvalue condition is necessary
in each above theorem.

2. The proof of Theorem 1. The proof is simplified by agreeing to
call an operator A “d-positive” (for a specified 6>0) if |4x|=6|x| for
all vectors x orthogonal to the nullspace of 4. One can check that any
operator of the form: K—AI, where K is compact, I is the identity, and
A#0, is d-positive for some, possibly very small, positive 6. If we set
A(t)=K(t)—A(t)I, then Theorem 1 can be restated as follows:

LEMMA. For each te J, let the operator A(t): H—H be é(t)-positive
(where 6(t)>0) and have 0 as a distinct eigenvalue. Assume the operator
Jfunction A(t) is absolutely continuous on J in the operator norm. Then
the corresponding (to 0) normalized eigenvector function @(t) can be
chosen absolutely continuous on J.

PROOF. At each.?, ¢(t) is unique only to a factor of +1. (Complex
multiples are not in H.) For a specified choice of ¢(t) and #,, t € J, let
P(to, t)=<(p(t0)a <P(’))<P(‘o) and P_L(to, t)=¢(t)_P(’0’ t) so that PJ.(to’ 1)
is orthogonal to ¢(t,) and | p(t,, t)I>+|p, (%, t)I*=1. One can check that

0y A(t)p (1, 1) = [A(t))— A()](2).

Since A(t,) is d(t,)-positive and |@(t)|=1 for all ¢, equation 1 implies
(where || - || is the operator norm) that
2 6(to) | py (to, DI = 11 A(2) — A1)l for all 1.

We conclude that |p, (1, #)|=0, |p(t, 1)I—1, and (), @(t))|—1
as 1—t,. For any t, € J, there is a relatively open interval I(¢,) containing
t, on which {(@(z,), ¢(2))#0. Redefine ¢(¢) at each ¢ € I(f,) by multipli-
cation by +1 so that (@(t), (1)) is positive. Then (p(f,), @(£))—1
and @(t)—>g¢(t,) as t—1,. Let I*(t,) be a relatively open subinterval of
I(t,) in which (@(t,), @(2))>% and |@(t,)— @(t)| <3. It is easily seen that
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the product (@(¢,), @(t;)) is positive whenever ¢, and 1, are in I*(t,), and
therefore the preceding argument shows that the redefined function ¢(t)
is continuous throughout I*(z,).

It is intuitive that if 4(t) and @(7) (which spans the nullspace) are con-
tinuous, then A(t) is uniformly d-positive on a sufficiently small interval
I**(1,) about 1. This is proven starting with the equation:

Ay = [A(t) — A(t)ly + A1) [y — (v, ¢(te) — ¢(1))g(10)]
which holds whenever y is orthogonal to ¢(r).
One can show that |@(t;)— @(12)| </2lp . (1;, 15)| for 1;; 1, € I*(1,). Use

this in connection with equation 2 and the uniform J-positivity of A(r)
to obtain (for a fixed positive 9)

0 lo(ty) — @(ta)l < /2 | A(t)) — A(tz)ll (Whenever #,, 1, € I**(1y)).

This immediately shows ¢(t) is absolutely continuous on I**(t).
The result is easily extended to the (compact) interval J.

3. The proof of Theorem 3. It will be shown that if K(r) commutes
with K'(¢) (written: K(t)~K'(t)) a.e. in J, then the absolutely continuous
eigenvector functions ¢, (r) of K(r) are all constant. Assume ¢(t) is the
eigenvector function corresponding to the eigenvalue function A(r)
and let A(t)=K(t)—A(t)I. Then A'(z) exists a.e. and A(t)~A'(1) a.e.
in J. Since 0 is a distinct eigenvalue of A4(r), we conclude that ¢(t) is also
an eigenvector of A'(t), i.e. A'(t)p(t)=a(t)@(t) for a real function «(z).
From A(t)p(t)=0 weobtainA'(t)p(t)+ A(t)¢'(t)=0. Therefore A(t)¢' (1) + -
a(t)p(t)=0 a.e. The vector product of this equation with ¢(t) shows
that x()=0 a.e. in J. Therefore ¢(z) and ¢'(t) are both eigenvectors of
A(r) at the distinct eigenvalue 0, and it follows that: ¢'(r)=c(t)p() for
a real function c(r). We find that c(r)=(g@(t), ¢'(t)), so c(t) is integrable,
and, for 1, € J, the differential equation has a unique absolutely continuous
solution ¢(t)=C(t)e(t,), where C(t)=j'§o c(t’)dt’. C(1) is real and contin-
uous, and |C(t)|=1. Therefore C(t)=1 and ¢(t)=¢(1,) for t € J.

4. The distinct eigenvalue condition is necessary. This is shown by an
example. Let K, and K_ be two square matrices, each with distinct eigen-
values, which do not commute. Define K(z) as follows:

K(t)=1+1*K_ whent <0,

=TI+ 3K, whent = 0.
Then K(z) has the following properties: 1. K() and its eigenvalues are
absolutely continuous on any finite interval, and the eigenvalues are

distinct except at r=0. 2. K'(r) exists and K(t)~K’(r) at all 7 including
0. 3. The (continuous) eigenvectors of K(r) are constant on (— o0, 0) and
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on (0, c0) and are simply the eigenvectors, respectively, of K_ and K.
Thus they are not continuous across 0. 4. If ,<0<t,, then K(t;) and
K(1,) do not commute.
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