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ABSOLUTE CONTINUITY OF EIGENVECTORS
OF TIME-VARYING OPERATORS

ANDREW F.  ACKER1

Abstract. If K(t) is a compact, selfadjoint operator function

of a real variable t with distinct eigenvalues at each t, we show that

the eigenvalues and eigenvectors are absolutely continuous and that

{K(t)} is a commuting set provided that K(t) commutes with its

time derivative K'(t) at each t. The distinct eigenvalue condition is

shown to be necessary.

1. Introduction. Let H be a real Hubert space, i.e. the inner product

on H is real valued. Let K(t):H-+H be a compact linear operator for

each t in a closed real interval /, and assume K(t) is absolutely continuous

in the operator norm on /. We will prove the following :

Theorem 1. Assume X(t) is a distinct (at each t e J), absolutely con-

tinuous eigenvalue function of K(t) on J, and let <p(t) be a corresponding

normalized eigenvector function. Then <p(t) can be chosen absolutely

continuous on J.

This result can be used inductively in connection with the usual spectral

theory for compact, selfadjoint operators to prove the following :

Theorem 2. Assume K(t) is selfadjoint and has only distinct, nonzero

eigenvalues at each t e J. Then there is a sequence of absolutely continuous

(on J) eigenvalue and (corresponding, normalized) eigenvector functions:

{Xn(t), <p„(t)}„ which include the spectrum of K(t) at each t, and

K(t)x = 2 h(t)<pn(t)(<Pn(0, x)       (xeH and t e J).
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1 This problem occurred in connection with the problem of factoring unbounded

operator functions during my doctoral research at Boston University, 1971. I wish

to thank Professor Marvin I. Freedman for helpful suggestions.
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The results concerning continuity of eigenvalues and eigenvectors

have a natural application to perturbation methods. Also Theorem 2

may be used to prove:

Theorem 3. Let K(t) be selfadjoint and have only distinct, nonzero

eigenvalues in J. Assume K(t) commutes with its derivative K'(t) almost

everywhere in J. Then {K(t)\t e J) is a commuting set.

All the theorems can be extended to corresponding theorems for un-

bounded operator functions which have a compact inverse for each t e J.

Theorems similar to 2 and 3 are proven for a square matrix function K(t)

which is not selfadjoint (and can have the eigenvalue 0) in A. Acker [1].

An example in §4 shows the distinct eigenvalue condition is necessary

in each above theorem.

2. The proof of Theorem 1. The proof is simplified by agreeing to

call an operator A "¿-positive" (for a specified <5>0) if |^x|_á|x| for

all vectors x orthogonal to the nullspace of A. One can check that any

operator of the form: K—Xl, where K is compact, / is the identity, and

A?éO, is ¿-positive for some, possibly very small, positive ô. If we set

A(t)=K(t)—A(r)/, then Theorem 1 can be restated as follows:

Lemma.   For each teJ, let the operator A(t):H-*H be ô(t)-positive

(where <5(r)>0) and have 0 as a distinct eigenvalue. Assume the operator

function A(t) is absolutely continuous on J in the operator norm. Then

the corresponding (to 0) normalized eigenvector function  <p(t) can be

chosen absolutely continuous on J.

Proof. At each, t, <p(t) is unique only to a factor of ±1. (Complex

multiples are not in H.) For a specified choice of <p(t) and /„, t e /, let

p(t0,t)=(<p(t0), <p(t))cp(Q and px(t0, t)=<p(t)-p(t0,t) so that px(t0, t)

is orthogonal to q>(t0) and \p(t0, t)\2+\p±(tQ, i)|2=l. One can check that

(1) A(t0)p±(t0, t) = [A(t0)-A(t)]<p(t).

Since A(t0) is <5(/0)-positive and \q>(t)\ = \ for all /, equation 1 implies

(where || • || is the operator norm) that

(2) ó(/0)|/7±(/0,OI = M(0-^('o)ll   for allí.

We conclude that \p±(t0, r)l—0, \p(t0, i)hl, and \(<p(t0), <p(t))\->-l

as t-*-t0. For any r0 e /, there is a relatively open interval I(t0) containing

r0 on which {<p(t0), <p(t)}?¿0. Redefine 95(f) at each t e I(t0) by multipli-

cation by ±1 so that (<p(t0), q>(t)) is positive. Then (<p(t0), <p(t))-*l

and <p(t)-+q>(t0) as t-*t0. Let I*(t0) be a relatively open subinterval of

/(i0) in which ((p(t0), <p(t))>\ and \<p(t0)—<p(t)\<h It is easily seen that
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the product (9?('i)> <p(tî)) is positive whenever fj and t2 are in I*(t0), and

therefore the preceding argument shows that the redefined function ç>(t)

is continuous throughout /*(/0)-

It is intuitive that if A(t) and <p(t) (which spans the nullspace) are con-

tinuous, then A(t) is uniformly ó-positive on a sufficiently small interval

/**(/„) about /„. This is proven starting with the equation:

A(t)W = [A(t) - A(t0)]y> + A(t0)[xp - (y>, <p(t0) - <p(t))<p(t0)]

which holds whenever ip is orthogonal to cp(t).

One can show that \(p(ti)—<p(t2)\<y/2\p±(t1, t2)\ for rxj t2el*(t0). Use

this in connection with equation 2 and the uniform ô-positivity of A(t)

to obtain (for a fixed positive <5)

ó Wi) - <p(U)\ < V2 M(r,) - /í(í2)||    (whenever f„ /2 g /**(*,)).

This immediately shows cp(t) is absolutely continuous on I**(t0).

The result is easily extended to the (compact) interval /.

3. The proof of Theorem 3. It will be shown that if K(t) commutes

with K'(t) (written : K(ty^K'(t)) a.e. in /, then the absolutely continuous

eigenvector functions <pn(t) of K(t) are all constant. Assume <p(t) is the

eigenvector function corresponding to the eigenvalue function X(t)

and let A(t)=K(t)-X(t)I. Then A'(t) exists a.e. and A(t)~A'(t) a.e.

in /. Since 0 is a distinct eigenvalue of A(t), we conclude that <p(t) is also

an eigenvector of A'(t), i.e. Ä(t)<p(t)=a.(t)<p(t) for a real function «(/).

From A(t)q>(t)=0 weobtain.4'(f M0+^(0?>'(0=0- ThereforeA(t)cp'(t)+
x(t)<p(t)=0 a.e. The vector product of this equation with <p(t) shows

that a(?)=0 a.e. in /. Therefore cp(t) and <p'(t) are both eigenvectors of

A(t) at the distinct eigenvalue 0, and it follows that: <p'(t)=c(t)<p(t) for

a real function c(t). We find that c(t)=(<p(t), q>'(t)), so c(t) is integrable,

and, for t0 e J, the differential equation has a unique absolutely continuous

solution (p(t)=C(t)<p(t0), where C(t)=jtt<¡c(t')dt'. C(t) is real and contin-

uous, and |C(/)| = 1. Therefore C(/)=l and <p(t) = (p(tb) for t e J.

4. The distinct eigenvalue condition is necessary. This is shown by an

example. Let K+ and K_ be two square matrices, each with distinct eigen-

values, which do not commute. Define K(t) as follows:

K(t) = I+t2K_   when t ^ 0,

= / + t2K+   when t ^ 0.

Then K(t) has the following properties: 1. K(t) and its eigenvalues are

absolutely continuous on any finite interval, and the eigenvalues are

distinct except at r=0. 2. K (t) exists and Ä"(/)~#'(0 at all r including

0. 3. The (continuous) eigenvectors of K(t) are constant on (— oo, 0) and
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on (0, co) and are simply the eigenvectors, respectively, of K_ and K+.

Thus they are not continuous across 0. 4. If /1<0<i2, then K(tj) and

K(t2) do not commute.
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