ABSOLUTE CONTINUITY OF EIGENVECTORS OF TIME-VARYING OPERATORS

ANDREW F. ACKER¹

ABSTRACT. If K(t) is a compact, selfadjoint operator function of a real variable t with distinct eigenvalues at each t, we show that the eigenvalues and eigenvectors are absolutely continuous and that $\{K(t)\}$ is a commuting set provided that K(t) commutes with its time derivative K'(t) at each t. The distinct eigenvalue condition is shown to be necessary.

1. **Introduction.** Let H be a real Hilbert space, i.e. the inner product on H is real valued. Let $K(t): H \rightarrow H$ be a compact linear operator for each t in a closed real interval J, and assume K(t) is absolutely continuous in the operator norm on J. We will prove the following:

THEOREM 1. Assume $\lambda(t)$ is a distinct (at each $t \in J$), absolutely continuous eigenvalue function of K(t) on J, and let $\varphi(t)$ be a corresponding normalized eigenvector function. Then $\varphi(t)$ can be chosen absolutely continuous on J.

This result can be used inductively in connection with the usual spectral theory for compact, selfadjoint operators to prove the following:

THEOREM 2. Assume K(t) is selfadjoint and has only distinct, nonzero eigenvalues at each $t \in J$. Then there is a sequence of absolutely continuous (on J) eigenvalue and (corresponding, normalized) eigenvector functions: $\{\lambda_n(t), \varphi_n(t)\}_n$ which include the spectrum of K(t) at each t, and

$$K(t)x = \sum \lambda_n(t)\varphi_n(t)\langle \varphi_n(t), x \rangle$$
 $(x \in H \text{ and } t \in J).$

Received by the editors December 18, 1972 and, in revised form, February 16, 1973. AMS (MOS) subject classifications (1970). Primary 47-00, 47B05, 47B10, 47A55, 15-00, 15A18, 15A27.

Key words and phrases. Compact operator function, eigenvalue and eigenvector functions, "real" Hilbert space, selfadjoint, distinct eigenvalues, absolute continuity, commuting set of operators.

¹ This problem occurred in connection with the problem of factoring unbounded operator functions during my doctoral research at Boston University, 1971. I wish to thank Professor Marvin I. Freedman for helpful suggestions.

The results concerning continuity of eigenvalues and eigenvectors have a natural application to perturbation methods. Also Theorem 2 may be used to prove:

THEOREM 3. Let K(t) be selfadjoint and have only distinct, nonzero eigenvalues in J. Assume K(t) commutes with its derivative K'(t) almost everywhere in J. Then $\{K(t)|t\in J\}$ is a commuting set.

All the theorems can be extended to corresponding theorems for unbounded operator functions which have a compact inverse for each $t \in J$. Theorems similar to 2 and 3 are proven for a square matrix function K(t) which is not selfadjoint (and can have the eigenvalue 0) in A. Acker [1]. An example in §4 shows the distinct eigenvalue condition is necessary in each above theorem.

2. The proof of Theorem 1. The proof is simplified by agreeing to call an operator A " δ -positive" (for a specified $\delta > 0$) if $|Ax| \ge \delta |x|$ for all vectors x orthogonal to the nullspace of A. One can check that any operator of the form: $K - \lambda I$, where K is compact, I is the identity, and $\lambda \ne 0$, is δ -positive for some, possibly very small, positive δ . If we set $A(t) = K(t) - \lambda(t)I$, then Theorem 1 can be restated as follows:

LEMMA. For each $t \in J$, let the operator $A(t): H \rightarrow H$ be $\delta(t)$ -positive (where $\delta(t)>0$) and have 0 as a distinct eigenvalue. Assume the operator function A(t) is absolutely continuous on J in the operator norm. Then the corresponding (to 0) normalized eigenvector function $\varphi(t)$ can be chosen absolutely continuous on J.

PROOF. At each t, $\varphi(t)$ is unique only to a factor of ± 1 . (Complex multiples are not in H.) For a specified choice of $\varphi(t)$ and t_0 , $t \in J$, let $p(t_0, t) = \langle \varphi(t_0), \varphi(t) \rangle \varphi(t_0)$ and $p_{\perp}(t_0, t) = \varphi(t) - p(t_0, t)$ so that $p_{\perp}(t_0, t)$ is orthogonal to $\varphi(t_0)$ and $|p(t_0, t)|^2 + |p_{\perp}(t_0, t)|^2 = 1$. One can check that

(1)
$$A(t_0)p_{\perp}(t_0,t) = [A(t_0)-A(t)]\varphi(t).$$

Since $A(t_0)$ is $\delta(t_0)$ -positive and $|\varphi(t)|=1$ for all t, equation 1 implies (where $\|\cdot\|$ is the operator norm) that

(2)
$$\delta(t_0) |p_{\perp}(t_0, t)| \leq ||A(t) - A(t_0)|| \text{ for all } t.$$

We conclude that $|p_{\perp}(t_0, t)| \rightarrow 0$, $|p(t_0, t)| \rightarrow 1$, and $|\langle \varphi(t_0), \varphi(t) \rangle| \rightarrow 1$ as $t \rightarrow t_0$. For any $t_0 \in J$, there is a relatively open interval $I(t_0)$ containing t_0 on which $\langle \varphi(t_0), \varphi(t) \rangle \neq 0$. Redefine $\varphi(t)$ at each $t \in I(t_0)$ by multiplication by ± 1 so that $\langle \varphi(t_0), \varphi(t) \rangle$ is positive. Then $\langle \varphi(t_0), \varphi(t) \rangle \rightarrow 1$ and $\varphi(t) \rightarrow \varphi(t_0)$ as $t \rightarrow t_0$. Let $I^*(t_0)$ be a relatively open subinterval of $I(t_0)$ in which $\langle \varphi(t_0), \varphi(t) \rangle > \frac{1}{2}$ and $|\varphi(t_0) - \varphi(t)| < \frac{1}{2}$. It is easily seen that

the product $\langle \varphi(t_1), \varphi(t_2) \rangle$ is positive whenever t_1 and t_2 are in $I^*(t_0)$, and therefore the preceding argument shows that the redefined function $\varphi(t)$ is continuous throughout $I^*(t_0)$.

It is intuitive that if A(t) and $\varphi(t)$ (which spans the nullspace) are continuous, then A(t) is uniformly δ -positive on a sufficiently small interval $I^{**}(t_0)$ about t_0 . This is proven starting with the equation:

$$A(t)\psi = [A(t) - A(t_0)]\psi + A(t_0)[\psi - \langle \psi, \varphi(t_0) - \varphi(t) \rangle \varphi(t_0)]$$

which holds whenever ψ is orthogonal to $\varphi(t)$.

One can show that $|\varphi(t_1)-\varphi(t_2)| < \sqrt{2|p_{\perp}(t_1, t_2)|}$ for t_1 ; $t_2 \in I^*(t_0)$. Use this in connection with equation 2 and the uniform δ -positivity of A(t) to obtain (for a fixed positive δ)

$$\delta |\varphi(t_1) - \varphi(t_2)| < \sqrt{2} ||A(t_1) - A(t_2)||$$
 (whenever $t_1, t_2 \in I^{**}(t_0)$).

This immediately shows $\varphi(t)$ is absolutely continuous on $I^{**}(t_0)$. The result is easily extended to the (compact) interval J.

- 3. The proof of Theorem 3. It will be shown that if K(t) commutes with K'(t) (written: $K(t) \sim K'(t)$) a.e. in J, then the absolutely continuous eigenvector functions $\varphi_n(t)$ of K(t) are all constant. Assume $\varphi(t)$ is the eigenvector function corresponding to the eigenvalue function $\lambda(t)$ and let $A(t) = K(t) \lambda(t)I$. Then A'(t) exists a.e. and $A(t) \sim A'(t)$ a.e. in J. Since 0 is a distinct eigenvalue of A(t), we conclude that $\varphi(t)$ is also an eigenvector of A'(t), i.e. $A'(t)\varphi(t) = \alpha(t)\varphi(t)$ for a real function $\alpha(t)$. From $A(t)\varphi(t) = 0$ we obtain $A'(t)\varphi(t) + A(t)\varphi'(t) = 0$. Therefore $A(t)\varphi'(t) + \alpha(t)\varphi(t) = 0$ a.e. The vector product of this equation with $\varphi(t)$ shows that $\alpha(t) = 0$ a.e. in J. Therefore $\varphi(t)$ and $\varphi'(t)$ are both eigenvectors of A(t) at the distinct eigenvalue 0, and it follows that: $\varphi'(t) = c(t)\varphi(t)$ for a real function c(t). We find that $c(t) = \langle \varphi(t), \varphi'(t) \rangle$, so c(t) is integrable, and, for $t_0 \in J$, the differential equation has a unique absolutely continuous solution $\varphi(t) = C(t)\varphi(t_0)$, where $C(t) = \int_{t_0}^t c(t') dt'$. C(t) is real and continuous, and |C(t)| = 1. Therefore C(t) = 1 and $\varphi(t) = \varphi(t_0)$ for $t \in J$.
- 4. The distinct eigenvalue condition is necessary. This is shown by an example. Let K_+ and K_- be two square matrices, each with distinct eigenvalues, which do not commute. Define K(t) as follows:

$$K(t) = I + t^2 K_{-} \text{ when } t \le 0,$$

= $I + t^2 K_{+}$ when $t \ge 0$.

Then K(t) has the following properties: 1. K(t) and its eigenvalues are absolutely continuous on any finite interval, and the eigenvalues are distinct except at t=0. 2. K'(t) exists and $K(t) \sim K'(t)$ at all t including 0. 3. The (continuous) eigenvectors of K(t) are constant on $(-\infty, 0)$ and

on $(0, \infty)$ and are simply the eigenvectors, respectively, of K_- and K_+ . Thus they are not continuous across 0. 4. If $t_1 < 0 < t_2$, then $K(t_1)$ and $K(t_2)$ do not commute.

REFERENCE

1. A. Acker, Stability results for linear systems involving a time varying unbounded operator, Doctoral Dissertation, Boston University, 1972, Appendix B.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY IN NEW ORLEANS, NEW ORLEANS, LOUISIANA 70122

Current address: Mathematisches Institut I, Universität Karlsruhe, 75 Karlsruhe 1, Englerstrasse 2, Germany