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AN EXAMPLE OF A LOCAL FLOW ON A MANIFOLD1

DENIS L. BLACKMORE

Abstract. Lctp be a point of a smooth n-dimensional manifold.

If n is even it is easy to construct a local flow about p such that p

is an isolated critical point and no orbit except the stationary one

at/? has/» as a limit point. We call such a flow a nonnull flow about

p (NN-flow). Mendelson has conjectured that NN-flows do not

exist on odd dimensional manifolds. We show that Mendelson's

conjecture is false by constructing an NN-flow on any smooth mani-

fold whose dimension is an odd integer exceeding one.

1. Introduction. Let p be a point of a finite-dimensional smooth

manifold M (here smooth means of class Cx) with tangent bundle T(M),

and let (U, h) be a coordinate system about/;. A continuous vector field

X: U^T(M) generates a local flow in a neighborhood of p, provided that

the vector field has unique integral curves (see [1], [2], [3], and [4] for

details).

If the dimension of M (dim M) is even, it is easy to construct a local

flow about p such thatp is an isolated critical point and no orbit except the

stationary one at p has p as a limit point; we shall call such a flow an

NN-flow about p (NN denotes the fact that there are no null solutions

based at p). In contrast to the even dimensional case, the question of

whether or not there exists an NN-flow about any point of M when dim M

is an odd integer exceeding one (clearly if dim M— 1, there exists no

NN-flow) is a fairly deep one and, to my knowledge, has not been resolved

in the literature. The purpose of this paper is to answer this question;

in particular, we demonstrate the falsehood of a conjecture of Mendelson

that there exists no NN-flow when dim M is odd. We accomplish this by

obtaining an example which provides a proof of the following:

Theorem 1. If dim M is an odd integer greater than one, then there

exists a vector field in a neighborhood of any point p of M which generates

an NN-flow about p.

The proof of Theorem 1 consists of constructing a local flow about p

with the property that every orbit other than the stationary one at p is

separated from p by an invariant torus.
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I wish to thank Professor P. Mendelson for bringing his conjecture to

my attention. The discussions we had concerning this problem, and

especially the doubts he expressed about the truth of his conjecture, were

instrumental in the writing of this paper.

2. Proof of Theorem 1 by example. Let Rn denote euclidean «-space

with element x=(x1; • • • , xn), and let 0 denote the origin in Rn. We

first note that it suffices to construct a vector field about the origin in R3

which generates an NN-flow about 0. Indeed let M be a smooth manifold

with dim M=2n+i («^1), and let/) be any point of M. We may assume

that the coordinate system (U, h) about p is such that h(U)=R2n+1, and

h(p)=0. Suppose that Wis an open neighborhood of 0 in R3 and F: w~->-R3

is a vector field which generates an NN-flow about 0. Recall that the

vector field G:(xlt x2)->-(—x2, Xj) is the standard center at the origin in

R2; in particular it generates an NN-flow about the origin on the whole

plane. Taking the cartesian product of F and the («—l)-fold cartesian

product of G, namely H=FxY~[%^i G, we obtain a vector field H: Wx

/{2(n-i)_^^2n+i which generates an NN-flow about the origin in R2n+1. Let

the restriction h\h~1(W) be denoted by g. Then g*(H), where g* is the

pull-back as in Sternberg [4, p. 89], generates an NN-flow about p on M.

We now proceed with the construction of an example in R3. The process

will be completed in a series of simple steps. The idea is to inductively

define smooth, non vanishing vector fields in a sequence of nonoverlapping

spherical shells of decreasing outer radius and thickness. Each of the

shells is centered at the origin, and their union is the solid ball in R3 except

for the origin; the field is then defined to be zero at the origin. The vector

field in each shell is constructed in virtually the same way so as to have the

additional property that the shell contains a torus which is invariant with

respect to the flow generated.

First we define a nonvanishing vector field on a typical shell which

extends a prescribed vector field on its boundary. We shall need the

following definitions: Let ||-|| denote the euclidean norm on jR". If N

is a manifold with boundary, we denote its interior by Int N and its

boundary by dN. Define the sets

B(r) ={xe R>: \\x\\ ̂  r (0 < r)},       S(r) = dB(r),

Q(r) = {xe R3:r ^ ||x|| < 8r (0 < r)}.

We shall begin with the shell Q(r), where r is any positive number. The

vector field on dQ(r) is prescribed as follows:

V0(x) = (0, r, 0),        xGS(r),

= (0, 0, 8r),       x G S(Br).
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This is extended to a nonvanishing vector field Vx(x) on Q(r) by defining

(1) ^(x) = (7r)-i(0, (8/- - ||x||)r, (|x| - r)8r)       (x 6 Q(r)).

This field is smooth (in fact analytic) on Q(r). We note that

|| VA = max{|| ̂ (x)|| :x e Q(r)} <: rj65.

Next, we modify the vector field V1 by imbedding an invariant torus in

the shell. In what follows let the disk of radius r in R2 be designated by

D(r)={xe R2:\\x\\^r}, and let d(A, A') denote the distance between

two subsets A and A' of/?3.

Let <j>(t) be a nondecreasing, smooth, real-valued function on jR such

that

<f>(t) = 0   for t = tt/6,       <p(t) = 77   for (5tt/6) < t < (7tt/6),

<p(t) = 2ir   for/ = (ll7r/6).

Then

C = {xe R3:x = x(t) = (-2r + 2r cos <f>(t), 2r sin /, 0), 0 = / < 2tt}

is a smooth, simple, closed curve in the xxx2-plane which contains the

portion of the xx-axis where — r^x2^r. The set

T={xeR3:d(x, C)^r}

is a smooth submanifold of R3 with boundary

dT= {xeR3:d(x,C) = r}.

We readily verify the following properties:

(i) Tand dTare, respectively, a solid torus and a torus; that is, they

are respectively diffeomorphic to dD(\)x D(\) and dD(\) x dD(\).

(ii) Tcontains the cylinder {x e R3:x\+xl=r2, — r^x2^r}.

(in) Let T'=T-lntB(r). Then T'^Q(r).

(iv) Let Te={x e R3:d(x, T)^e}. If 0<e<r, then Te and dTt are

respectively a solid torus and a torus. Also (Tc—lnt B(r))<=Q(r), and

d(Te, 5(8r))>r. The solid torus Thas a parametrization given by

xt = -2r + 2r cos <f>(u)[l + (sin2 u + cos2 <f>(u))-1/2w cos »],

(2) x2 = 2r sin u[l + (sin2 u + cos2 <£(u))~1/2»v cos v],

x3 = w sin v,

where 0_w, r_27r; 0_w_r. A parametrization of 9J is obtained by

setting w=r in (2).

Fixing v and w in (2) and allowing u to vary, we obtain a smooth, simple,

closed curve in a plane which is parallel to the xxx2 plane. Each of these
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curves has counterclockwise orientation ; the curves will be called genera-

tors of T. We note that T is partitioned by its generators. We use these

generators to define a vector field V2 on T'. Set V2(x) equal to the vector

obtained by taking the velocity vector at x of the generator passing through

this point and normalizing it to a magnitude of r. In this way we obtain

a smooth vector field V2 on T such that || V2(x)\ =r and V2(x) lies on the

XjX^plane for each x in 7". In view of (1), the definition of C, and property

(ii), we see also that V2(x) is a smooth extension of the restriction Vj\S(r).

At present, let e be subject only to the restriction 0<£<r; later we shall

further restrict it. We define a vector field V3 on (Q(r)—Int Tc)uT' by

V3(x) = V,(x),       x g (0(0 - Int Tc),

= V2(x),       x e T'.

Now we extend this to a vector field K5 on Q(r) by the following "normal

extension" process: At a point x e dT extend an outward normal vector

until it intersects dTt at the point x". The resulting line segment [x', x"],

which is of length e, may be parametrized x=x(t), O^r^e, where x(0)=

x , and x(e)=x". A vector field is defined on the boundary of the segment:

V2(x) at x and V^(x") at x". Let y(t) be a smooth, nondecreasing, real-

valued function on R such that y>(t)=0 forf^£/3,andy>(/)=l for r2ï2e/3.

Define K4 on [x', x"] by

V¿x(t)) = (1 - f(t))V2(x') + y(0 W)       (0 < t Í e).

Repeating this process at each point of dT, we obtain a vector field K4

defined on Tt—Int T which is a smooth extension of the given vector field

on the boundary of this set. Define

V>(x) = V3(x),       x g (Q(r) - Int Tc) u T,

m V¿x),       xe(Tc- Int T).

This field is smooth on Q(r), and tangent to each dT6 (0^ô^e/3). More-

over it is nonvanishing. Indeed, since V3(x) is never zero, the only way a

zero can arise is in F4(x). But this can occur only if at some stage of the

normal extension the vectors V2(x') and Vx(x") oppose one another. In

view of (1) and the definition of V2, this is impossible.

A final modification makes the field constant in a neighborhood of

S(Sr). We accomplish this by redefining the field in the shell Qe=B(&r)—

Int B(8r—e) so that it agrees with Vb on dQt. Observe that property (iv)

together with the restriction 0<£<r guarantees that any such alteration

does not change the field on Tc—Int B(r). In view of the continuity of V5

and the compactness of 5(8r), we can, and do, select e so small that the

vectors defined at the endpoints of the segment of every ray through 0
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joining S(8r—e) and S(8r) are not in opposition. Redefining the field in

Qe by the process of normal extension described above, we obtain a

smooth, nonvanishing vector field Ve which is an extension of K5|dße.

Define

F(x)=V5(x),       xe(Q(r)-Qc),

= K,(x),       x e Qc.

Then F is a smooth, nonvanishing vector field on Q(r). It is tangent to dT,

and therefore generates a flow on Q(r) for which d T is an invariant

surface. By retracing the modifications, we compute that

(3) «FU < VI30.

It is now easy to construct the desired example. Let Q=Q(l), let F

be the vector field on Q described above, and let T be the solid torus

associated with the field. Let the map f :R3-+R3 be the contraction

f1(x)=x/8, and let/2:-fe3-*/?3 be a clockwise rotation of 45 degrees about

the Xj-axis. Define / to be the composite f=f °f2. Clearly f(Q(r))=
Q(rß). Let /* be the map of tangent bundles induced by / (i.e. the

Figure 1
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differential of/), and let/" and /* be the «-fold composite of /and/*,

respectively. As usual, we shall denote the vector field f% ° F ° f~n on

fn(Q) by f*(F). We note that fl(F) is nonvanishing for every nonnegative

integer n. The following observations are the basis for the example:

(4a) For each «=0, 1, 2, • • • , f(dT) is a torus contained in the shell

fn(Q), and the vector field fl(F) is tangent to the surface fn(dT).

(4b) The union 5(8)-{0}=U£=o/"(ô) is nonoverlapping, and for

each nonnegative integer «, the fields fl+1(F) and /*(F) defined on fn+1(Q)

and f"(Q), respectively, agree on the intersection of their domains. More-

over, the unique extension of fZ+1(F) and fl(F) to fn+1(Q)V f(Q) is

smooth.

The desired vector field on 5(8) (see Figure 1) is defined by

X(x) = fl(F)(x),       x g p(Q), n = 0, 1, 2, • • • ,

= 0, x = 0.

By virtue of (4b) and (3) which implies that ||/£(F) 11^8-%/130, it follows
that X is smooth in 5(8)—{0} and continuous in 5(8). The smoothness

of X implies that each point in 5(8)—{0} has a unique integral curve of X

passing through it. In view of (4a) none of these integral curves can reach

the origin. For if x e (5(l)-{0}), then for some n>0, x e (fn(T)-fn+1(T))

which is an invariant set bounded away from the origin. Consequently, X

has a unique integral curve through each point in a neighborhood of the

origin and so generates a local flow. Since each nonstationary orbit of this

flow is contained in an invariant manifold which is bounded away from

0, X generates an NN-flow about 0. This completes the proof.
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