THE M.H.D. VERSION OF A THEOREM OF H. WEYL

CHARLES C. CONLEY AND JOEL A. SMOLLER

ABSTRACT. In his discussion of shock waves in arbitrary fluids, H. Weyl proves a theorem concerning the behavior of the entropy function along the Hugoniot curve. The analogous result is proven for the M.H.D. case.

The theorem of the title concerns the behavior of a function on a curve: The function represents entropy, the curve is the Hugoniot curve. Such a curve is determined for each point (V_0, p_0) in the positive quadrant of the (specific) volume-pressure plane. Weyl [3] shows for gas dynamics that the entropy function restricted to this curve has at most one critical point, and that (V_0, p_0) is the candidate. The significance of the result is that the entropy behaves in the physically expected way across shocks. For the general context the reader is referred to [2]; here we only want to point out how Weyl's clever argument works in the magnetohydrodynamic (m.h.d.) case.

The Hugoniot curve in the (V, p) plane corresponding to the point (V_0, p_0) is defined [1] by the equation

(1)
$$H(V,p) = e - e_0 + \frac{1}{2}(p + p_0)(V - V_0) + \phi(V) = 0.$$

Here e=e(V,p) represents internal energy and $e_0=e(V_0,p_0)$. The function $\phi(V)$ is identically zero in the case of gas dynamics while in the m.h.d. case ϕ takes the form

(2)
$$\phi(V) = K(V - V_0)^3 (V - V_1)^{-2}$$

where K and $V_1 \neq V_0$ are positive constants (see [1]). We use the following facts and hypothesis:

- (3) $de = -p \, dV + T \, ds$, where T and s denote respectively the temperature and entropy.
- (4) Given V and s, a unique value p=p(V,s) is determined. For the function so defined, $\partial^2 p/\partial V^2$ and $\partial p/\partial s$ are both positive.

(5)
$$\phi(V_0) = \phi'(V_0) = 0$$
 and $\phi''(V)(V - V_0) \ge 0$.

Received by the editors April 3, 1973.

AMS (MOS) subject classifications (1970). Primary 76L05, 76W05.

For the ϕ of m.h.d. this is satisfied. In particular we compute

$$\phi'(V) = 3K(V - V_0)^2(V - V_1)^{-2} - 2K(V - V_0)^3(V - V_1)^{-3},$$

$$\phi''(V) = 6K(V - V_0)(V - V_1)^{-2} - 12K(V - V_0)^2(V - V_1)^{-3} + 6K(V - V_0)^3(V - V_1)^{-4},$$

$$\phi''(V)(V - V_0) = 6K\{(V - V_0)(V - V_1)^{-1} - (V - V_0)^2(V - V_1)^{-2}\}^2$$

$$\geq 0.$$

The main lemma (8) used to examine the behavior of s on the set where H=0 concerns the behavior of s on a different family of curves. These are defined to be those curves restricted to which the one-form $\omega = dH - T ds$ vanishes.

From (1), using (3), we compute

$$dH = \left[\frac{1}{2}(p_0 - p) + \phi'(V)\right] dV + \frac{1}{2}[V - V_0] dp + T ds.$$

Thus the integral curves of $\omega = 0$ are solutions of the ordinary differential equation

(6)
$$\dot{V} = V - V_0, \quad \dot{p} = p - p_0 - 2\phi'(V).$$

Using $\phi'(V_0)=0$ in (5), observe that the point (V_0, p_0) is a repelling rest point of these equations; we let R denote the set of points in the positive (V, p) quadrant which are in the domain of repulsion.

Note that if $\phi \equiv 0$ then R is the whole positive quadrant. Also with the ϕ of m.h.d., R contains precisely those points of the quadrant which lie on the same side of the line $V = V_1$ as does V_0 . Namely, given any such point (V, p), the V component of the solution goes to V_0 as $t \to -\infty$. This, with $\phi'(V_0) = 0$, implies the p component goes to p_0 . Also, as the V component tends to V_1 , the absolute value of the p component must go to infinity.

Now let γ be any integral curve of (6) in R. The relevant facts about the behavior of s on γ are the following:

(7) The critical points of
$$H|\gamma$$
 and $s|\gamma$ coincide.

This follows from $dH = \omega + T ds$.

(8) Any critical point of $s|\gamma$ is a maximum; in particular, $s|\gamma$ has at most one critical point.

To see this we observe there are two ways of writing the derivative, \dot{p} , of p on γ ; namely,

$$p - p_0 - 2\phi'(V) = \dot{p} = p_V \dot{V} + p_s \dot{s}.$$

Now differentiate this equation again along γ and evaluate at a critical point of s (\dot{s} =0). Writing 0 for terms involving \dot{s} we have

$$p_V \dot{V} + 0 - 2\phi''(V)\dot{V} = p_{VV}\dot{V}^2 + 0 + p_V \ddot{V} + 0 + p_S \ddot{s}.$$

From (6) we see that $\ddot{V} = \dot{V} = V - V_0$ and so we conclude that

$$\ddot{s} = -p_s^{-1} [2\phi''(V - V_0) + p_{VV}(V - V_0)^2].$$

Now from (4) and (5), $\ddot{s} < 0$ so (8) is proved.

Weyl's statement now takes the form:

(9) THEOREM. If $(V, p) \neq (V_0, p_0)$ is a point in R at which H=0 and $dH \neq 0$, then $s|_{H=0}$ is not critical at (V, p).

PROOF. Since $dH\neq 0$ at (V,p), the set $\{H=0\}$ meets a neighborhood of (V,p) in a curve. Suppose the restriction of s to this curve is critical at (V,p); then, since $dH=\omega+T\,ds$, the restriction of s to the integral curve of (6) through (V,p) is also critical at (V,p). Consider the negative half orbit, say γ , from (V_0,p_0) to (V,p) (definition of R): H is zero at both ends of γ so $H|\gamma$ is critical at some point of γ strictly between (V_0,p_0) and (V,p). Since H and s are critical together on γ in (7) we find that s has two critical points on an orbit of (6). This contradicts (8).

In order not to spoil the proof, we have not investigated the question of existence of points in $\{H=0\}$ at which dH=0. In the case of a perfect gas, this does not happen.

REFERENCES

- 1. H. Cabannes, Theoretical magnetohydrodynamics, Academic Press, New York, 1970.
- 2. R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Interscience, New York, 1948. MR 10, 637.
- 3. H. Weyl, Shock waves in arbitrary fluids, Comm. Pure Appl. Math. 2 (1949), 103-122. MR 11, 626.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 (Current address of C. C. Conley)

Current address (J. A. Smoller): Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104