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THE M.H.D. VERSION OF A THEOREM OF H. WEYL

CHARLES  C.  CONLEY AND  JOEL A.  SMOLLER

Abstract. In his discussion of shock waves in arbitrary fluids,

H. Weyl proves a theorem concerning the behavior of the entropy

function along the Hugoniot curve. The analogous result is proven

for the M.H.D. case.

The theorem of the title concerns the behavior of a function on a curve :

The function represents entropy, the curve is the Hugoniot curve. Such

a curve is determined for each point ( V0, />„) in the positive quadrant of

the (specific) volume-pressure plane. Weyl [3] shows for gas dynamics

that the entropy function restricted to this curve has at most one critical

point, and that (V0,p0) is the candidate. The significance of the result

is that the entropy behaves in the physically expected way across shocks.

For the general context the reader is referred to [2]; here we only want

to point out how Weyl's clever argument works in the magnetohydro-

dynamic (m.h.d.) case.

The Hugoniot curve in the (V, p) plane corresponding to the point

(V0,p0) is defined [1] by the equation

(1) H(V,p) = e-e0 + \(p+ p0)(V - V0) + <f>(V) = 0.

Here e=e(V,p) represents internal energy and e0=e(V0,p„). The

function <f>(V) is identically zero in the case of gas dynamics while in the

m.h.d. case <f> takes the form

(2) <f>(V) = K(V - V0f(V - Vx)~*

where K and Vx (# VQ) are positive constants (see [1]).

We use the following facts and hypothesis:

...        de=—p dV+Tds,  where  T and s denote respectively  the

'       temperature and entropy.

...       Given V and s, a unique value p=p(V, s) is determined. For

the function so defined, d2p¡dV* and dp¡ds are both positive.

(5) <f>(V0) = <f>'(V0) = 0   and   <f>"(V)(V - V0) £ 0.
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For the <f> of m.h.d. this is satisfied. In particular we compute

<j>'(V) = 3K(V- V0)2(V - VJ-* -2K(V- V0f(V - Vx)-\

4>"(V) = 6K(V- V0)(V - Vx)-* -12K(V- V0)2(V - Vx)~3

+6K(V- V0f(V- Vx)-\

4T(y)(y - v0) = 6K{(v - v0)(v - vj-1 -(v- v0)2(v - vxy2}2

= 0.

The main lemma (8) used to examine the behavior of i on the set where

H=0 concerns the behavior of 5 on a different family of curves. These

are defined to be those curves restricted to which the one-form œ=dH—

T ds vanishes.

From (1), using (3), we compute

dH = [Upo -p) + <f>'(V)] dV + \[V - K0] dp + Tds.

Thus the integral curves of w=0 are solutions of the ordinary differential

equation

(6) V=V-V0,      p=p-Po-2<f>'(V).

Using <^'(K0)=0 in (5), observe that the point (V0,p0) is a repelling

rest point of these equations; we let R denote the set of points in the

positive (V, p) quadrant which are in the domain of repulsion.

Note that if <£=0 then R is the whole positive quadrant. Also with

the <f> of m.h.d., R contains precisely those points of the quadrant which

lie on the same side of the line K= Vx as does V0. Namely, given any such

point (V,p), the V component of the solution goes to V0 as t-*— oo.

This, with <j>'(Vo)=0, implies the p component goes to p0. Also, as the

V component tends to Vx, the absolute value of the p component must

go to infinity.

Now let y be any integral curve of (6) in R. The relevant facts about

the behavior of j on y are the following:

(7) 77ze critical points of H\y and s\y coincide.

This follows from dH=<o+Tds.

Any critical point of s\y is a maximum; in particular, s\y has

at most one critical point.

To see this we observe there are two ways of writing the derivative,

p, of p on y; namely,

p-p0-2<p'(V)=p=pvV + pß.



250 C.  C.  CONLEY AND J.  A. SMOLLER

Now differentiate this equation again along y and evaluate at a critical

point of j (i=0). Writing 0 for terms involving s we have

PyV + 0  -  2<f>"(V)V =  PyyV* +  0 + PyV + 0 + ft*

From (6) we see that K= V= V— V0 and so we conclude that

S  =   -P?{2<P"(V   -   V,)   +  Pyy(V   -   V0)%

Now from (4) and (5), s<0 so (8) is proved.

Weyl's statement now takes the form:

(9) Theorem. If (V,p)^(V0,p0) is a point in R at which H=0 and

dH¿¿O, then s\H=0 is not critical at (V,p).

Proof. Since dH^O at (V,p), the set {H=0} meets a neighborhood

of ( V, p) in a curve. Suppose the restriction of s to this curve is critical at

(V,p); then, since dH=w+Tds, the restriction of s to the integral

curve of (6) through ( V, p) is also critical at ( V, p). Consider the negative

half orbit, say y, from (V0,p0) to (V,p) (definition of R):H is zero at

both ends of y so H\y is critical at some point of y strictly between

(V0,p0) and (V,p). Since H and j are critical together on y in (7) we find

that s has two critical points on an orbit of (6). This contradicts (8).

In order not to spoil the proof, we have not investigated the question

of existence of points in {H=0} at which dH=0. In the case of a perfect

gas, this does not happen.
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