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COHOMOLOGY, MAXIMAL IDEALS, AND
POINT EVALUATIONS1

ALEXANDER NAGEL2

Abstract. We consider algebras A of continuous complex

valued functions, which are given as the set of global sections of a

sheaf y on a topological space X. Under the hypothesis that all

the higher cohomology groups of the sheaf are zero, we investigate

the relationship between ideals in A, kernels of algebra homomor-

phisms of A into the complex numbers C, and sets of functions

vanishing at a point of X. As applications, we obtain some simple

proofs of theorems about ideals in certain algebras of holomorphic

functions.

Let Y be a topological space, and let ¡f be a sheaf of local C-algebras

on X. We shall assume :

(a) For all xeX, the maximal ideal of the stalk Sfx is mx, and the

composition C-+SfX-+Sfx\mx is an isomorphism.

(b) For every feT(X,Sf), the associated complex valued function

/is continuous, where f(x) is the residue class of the germ of/at x in

(c) For all q% 1, H"(X, ST)=(0).

Theorem 1. Suppose that I is an ideal in Y(X,Sf), and that there is

a finite subset {fu • • • ,/„} c / so that for all x e X, there exists aj so that

f(x)jéO. Then I=T(X, &).

Proof.   Consider the following Koszul complex of sheaves on X:

(O _► a." yn -*■'» An_1 sfn-+---

(l) -► y\* Sfn ->•** A*-1 &"" -*■ • ■ •

_„ /y2 yn _,.*, ^n _+ix g> _ (0).

Here Sfn denotes the direct sum of n copies of S?, and A,* SPn denotes

the /tth exterior power of Sfn. Also :
n

<5i(si, • • •, s„) = 2 siU
¿=i
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and

¿»i«*.....J'l] A • • • A [ij)

= (-i)*"X....A/jy a • • • a [yA a • • • a [y.

Here {[j'i]a • • -A[/t]} are the basis elements of f^ Sfn over Sf. [/,]*

indicates the omission of [/',-]. Standard repeated index summation notation

has been used.

We now show that sequence (1) is exact. First, an easy computation

shows that ôk_xôk=0, so that sequence (1) is actually a complex. Next,

at each point x e X at least one of the functions/1; '" ,/„ is not zero.

Suppose /¡(x)t¿0. Then [ft]x $ mx, so [fl]x1eSfx exists. Hence given

s e if,., s—f • (s • [fix1)- Thus <5, is surjective.

More generally, let (o=sh (jk[/j]A • • • A[ik] e {/\k ¿fn)x and suppose

cyo=0. Let ç) e (A*4"1 Sf«)x be the element

<p = (-îyi/iEV-.jy a • • • a [y a Bj.

Then another computation shows that <53+1(<p)=co. Thus sequence (1)

is exact.

Each term in (1) is isomorphic to a direct sum of a finite number of

copies of Sf. Since H"(X, Sf)=(0) for all q^l, the higher cohomology

of each term in (1) vanishes. Hence in sequence (1), if we take global

sections, the resulting sequence is exact. In particular, we have

(2) T(X, if)n -**1 Y(X, Sf) — (0)

exact; i.e. the map ôx:T(X,^)n^T(X,^) given by ôx(sx, ■ ■ ■ , sn)=

2?=i s}f is surjective. Since {/, • • • ,/„}c/ it follows that I=T(X, SP),

and hence the theorem is true.

Corollary 1. Suppose that X is compact. Then for every proper ideal

I^T(X,Sf), there exists an x e Xso that/(x)=0 for allfeI.

Proof. Suppose the theorem is false. Then for every xeX, there exists

fel with/(x)?í0. Since/is continuous, there is an open neighborhood

7Y of x in X so that/(y)?£0 for all y eN. By compactness, we can find

a finite number of these neighborhoods which cover X. Hence there is a

finite set {fx, • • • ,/„}<=/ so that for any y e X, there is an/ with/(y)?£0.

By Theorem 1, this implies that I=T(X, Sf), so that the corollary is true.

Corollary 2. Let X<=-Cn be a compact set which can be written

JSf=f|,"iA-, where D^Cn is a domain of holomorphy. Let J^{X) be

the algebra of germs of holomorphic functions on X. Then every maximal

ideal of3tf"{X) is the set of functions vanishing at some fixed point ofX.
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Proof. Let 0 denote the sheaf of germs of holomorphic functions

on Cn. Then 3t(X)=Y(X, <9), and fora=l, H«(X, 0)=dir lim H*(Dit 0)
= (0) by Cartan's Theorem B. (See Gunning and Rossi [1, p. 243].)

Since Y is compact, the corollary follows from Corollary 1.

Corollary 3. Let Y<= Cn satisfy the same conditions as in Corollary 2.

Let A(X) denote the uniform closure of 3^(X). Then the maximal ideal

space ofA(X), viewed as a function algebra, is homeomorphic to X.

Proof. It suffices to show that for every algebra homomorphism q>:

A(X)-*C, there exists x e X so that q>(f)=f(x). Let/={/e tf (X)\<p(f)=0).
Then / is a maximal ideal in Jf(X) so by Corollary 1, there is xe X

with <p(f)=f(x) for all/G 3f(X). Since Jf(X) is dense in A(X), and q> is

continuous, it follows that (p(f)=f(x) for all/G A(X).

Corollaries 2 and 3 are false without the hypothesis that X—C\f=1 Dt,

where each D{ is a domain of holomorphy, as the standard example

X={(z, w) g C2| |z|^|w|5íl} shows. Also, Corollary 1 is false in general

if Y is not compact. For example let Y=C, and $*=6, the sheaf of germs

of holomorphic functions on C. Then H"(X, $")=(0) for c/= 1 and T(Y, S?)

is the algebra of entire functions. However if {z„} is an infinite discrete

set in C, and / is the ideal of entire functions which vanish at all except

some finite subset of {zn}, then / is a proper ideal, but the functions in /

have no common zero. We can, however, prove the following in the non-

compact case :

Corollary 4. Let X and Sf satisfy conditions (a), (b), (c). Suppose

there are a finite number of global sections {f, • ■ ■ ,/„} c T(X, S") such

that the associated continuous functions on X separate the points of X.

Then for every nonzero algebra homomorphism <p:Y(X,3r°)—+C, there

exists xeXso that q>(f)=f(x) for allfe T(X, ST).

Proof. Let g¡=f, — <p(f,), for y'=l, • • • , n. Then the functions gjf
7=1, ••■ ,n, still separate the points of X. Let Z={xe X\gj(x)=0}.

Then there is at most one point x0 e Z. If the corollary is not true, there

exists g0 g r(Y, Sf) so that q>(g0)=Q but |0(a:0)?í0. Then the functions

{¿o» ' ' ' > Sn) have no common zeros. Proceeding as in Theorem 1, we

see that every element fe F(X, Sf) can be written 2íI=o/¿^¡ f°r some

/ g T(X, Se). But then <p(f)= 2?^0<p(fi)<P(gi)=0, so <p is the zero
homomorphism, a contradiction. Hence the corollary is true.

The following result is now immediate:

Corollary 5. Let X be a Stein space supporting a finite number of

holomorphic functions separating points, and let <9 be the structure sheaf.

Then every nonzero algebra homomorphism <p:T(X, <9)->C is given by
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evaluation at a point of X. In particular, every algebra homomorphism

is continuous ifV(X, 0) is given the usual Fréchet topology.

Finally, we show that, at least without additional assumptions on the

sheaf SP, the converse to Corollary 1 is not in general true. Let

X={z e C\l ^ \z\ ̂ 2}. Let if be the sheaf of nonsingular rational functions

on X. Then T(X, if) is the algebra of rational functions on C having

no poles on X. It is easy to see that for any proper ideal /c T(X, £f),

there exists A e X, so that all the functions in / vanish at A.

Now let .Ux={zeX\Re(z)<%}, and U2={z e X\Re(z)>-l}. Then

{Ux, U2} is an open cover of X, and Uxr\U2 is the disjoint union of two

open sets in X. Define^ m UXC\U2 by setting

/12(z) = 0,   iflm(z)<0,

= z,    if Im(z) > 0.

Set/21=—fx2. Then {/,} is a 1-cocycle with values in Sf. If {/,} were a

coboundary on some refinement, fij=Fi—Fj, then F—Fj when lm(z)<0,

so we would have a multiple valued rational function, which is impossible.

Hence tf1^, ¿O # (0).

Reference

1. R. C. Gunning and H. Rossi, Analytic functions of several complex variables,

Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J.,

1965. MR 31 #4927.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin

53706


