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HOLOMORPHIC SOLUTIONS  OF FUNCTIONAL
DIFFERENTIAL SYSTEMS NEAR SINGULAR POINTS

L. J.  GRIMM1 AND L.  M. HALL

Abstract. Functional analysis techniques are used to prove a

theorem, analogous to the Harris-Sibuya-Weinberg theorem for

ordinary differential equations, which yields as corollaries a

number of existence theorems for holomorphic solutions of linear

functional differential systems of the form z"y'(z)=A(z)y(z)+

B(z)y(oiz)+C(z)y'(a.z) in the neighborhood of the singularity

at z=0.

The existence of holomorphic solutions of ordinary differential systems

near a singular point has been extensively studied. F. Lettenmeyer [6]

showed that a linear system with an irregular singular point at z=z0 may

have several linearly independent solutions holomorphic at z0; his theorem

gives an estimate on the number of such solutions. Lettenmeyer's original

proof was quite involved ; the proof has been greatly simplified by W. A.

Harris, Jr., Y. Sibuya, and L. Weinberg [5], who used functional analysis

techniques to establish a theorem which includes Lettenmeyer's theorem

and several results on systems of Briot-Bouquet type as simple corollaries.

Several authors ([1], [2], [3], [7]) have studied existence of solutions

of functional differential equations with contracting arguments in the

neighborhood of a singularity at the origin. All the equations considered

in their articles are of Briot-Bouquet type, and only Grudo in [3] deals

with systems of neutral-differential equations. In this paper we extend

the results of Harris, Sibuya and Weinberg to a class of neutral-differential

systems, obtaining as corollaries an analogue of Lettenmeyer's theorem

and a generalization of the results of Grudo. Our principal result is the

following theorem.

Theorem. Let A(z), B(z), and C(z) be nxn matrices holomorphic

at z=0, let D= diag(rf1; • • •, dn) with nonnegative integers d{, and let

a, |a|<l, be a complex constant. Then for every positive integer N suffi-

ciently large, and every polynomial <f>(z) with zD<f>(z) of degree N, there

exists a polynomial f(z; <f>) (depending on A, B, C, a, and N) of degree
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N— 1 such that the linear neutral-differential system

(1) zDy'(z) = A(z)y(z) + B(z)y(«z) + C(z)/(«z) + f(z; <f>)

has a solutiony(z) holomorphic at z=0 Further, f and y are linear and ho-

mogeneous in <f>, and zD(y—<j>)=0(zN+1) as z-*0

Proof. The proof is an application of the Banach fixed point theorem.

Let <5>0 and let X be the set of all n-vector valued functions

f=f(z) whose components have absolutely convergent power series

expansions in \z\£d. For/G*,/(z)=2?=o/^*,/*=(/1. ■ ' ' ,ftf, define

11/11 = I£ol/tl¿», where I/J-2W/ÍI- With this norm, X is a Banach
space.

For a sufficiently large positive integer N, define the mapping LN:X->X

as follows: LNy=g, where

y(z) = (y\z), ■■-, y«(z)f,       g(z) - (g\z), ■■■, gn(z)f,

with yi(z)= 2?=0 y{z\ gj(z)=IZLN Ofc"**)/<*+1 -d3). Hence

(2) l|Lvyl| < 2     //'       \\y\\.
£[ N + 1 - dj

Define j)(z)=(/(az), • • • .yfayfm&to. • • • , j>"(z))r with

y\z) = I y^sfyP2*-
¡fc=0 7c=0

Also definey*(z)=(y*1(z), ■ • • ,y*n(z))T, with

y*\z) - | (k + Da'v^z*.
k=0

Note that y and j* have absolutely convergent power series expansions

for |z|_?á, and also that

(3) \\y\\ =- Wyl

Furthermore, setting %(z)=2S=o(2?=il^l)^> M=<5> we have

X'(W\z) = Zk(Z\yÍ\)wrizk-\       |z|$¿.

By the Cauchy integral formula,

,/(W z)| < ^}^m =   ^  ,   |X| < ¿.
IZ IN     )\  -     (52(1   _   |a|)2 ó,(1   _  |a|)2
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Hence

(4) \\y*\\ - lz'(|a| «5)| ̂  \\y\\/ô2(l - |a|)2.

If M is an n xn matrix, M=(mij), with elements having absolutely

convergent power series expansions for \z\^ô, m"=J_k=0 m\izk, then for

/eA-wehaveM/eZand ||M/||^||M|| ||/||, where

ii m\ = i?.,., (zu Ki n
Let <£=(<¿\ • • • , <f>n)T be a vector polynomial with <f>>(z)=Zk=o¡ $&,

and consider the functional equation in X

(5) y = 4> + TN[y],

where TN[y]=LN(Ay+By+Cy*). The estimates (2)-(4) imply that for

N sufficiently large, ||rA||<l, and thus there exists a unique solution

yeX,y(-;<f>)=(I-TNyi<f>.
From the definition of the mapping TN it follows that the holomorphic

solution of the functional equation (5) satisfies the linear differential

system of the form (1), where

f(z; cf>) mffe*

(6) JJ       N-l N-l N-l

= zDf - 2 Ay( ■ ; <f>)kzk - £ By( ■ ; <f>)kz« - £ Cy*{- ; <f>)kzk.
uZ       k=0 k=0 k=0

Since the coefficients of y( • ; <f>) (and thus also y and y*) are linear in the

coefficients of <j>, this is also true for the/*.. The proof is complete.

The corollaries below follow from the theorem similarly to the proofs

of corresponding results in [5].

Corollary 1.   Let D= trace D and n—d^.0. Then the system

(7) zDy'(z) = A(z)y(z) + B(z)y(oiz) + C(z)/(az)

has at least n—d linearly independent solutions holomorphic at z=0.

Corollary 2.   Let

A(z)=2 AJ>,   B(z) = 2 ****.   and   C(z)= f C^

be convergent for \z\<a (a>0), and let y(z)=Z.k=o)'kzk De a formal solution

of

(8) zy'(z) = A(z)y(z) + B(z)y(«z) + C(z)y'(xz).

Then y (z) is convergent for |z|<a.
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Corollary 3. Let A, B, and C be as in Corollary 2, let m be a fixed

integer, let a^O, and let nm+k be the number of linearly independent eigen-

vectors corresponding to the eigenvalue m+k of the matrix

Km+k = [A0 + «m+^0 +(m + k)x'H*-*C¿.

Then the number Nm (^0) of linearly independent solutions of the differential

system (8) of the form y=2k=o)>kZm+k satisfies Arm=«m+nm+1H-.

If, in addition, B0=C1=0, then N„>.max(nm, nm+1, ■ ■ •).

Remarks. 1. The results extend without change to systems with

several deviating arguments of the same form.

2. If A0=B0=C0=Q, then z=0 is an ordinary point for the system (8).

Hence, by Corollary 1, there exist at least n linearly independent solutions

for this system. If, in addition, Cj=0, then the coefficients of each formal

solution are determined recursively and there exist exactly n linearly

independent solutions of the system holomorphic at z=0.

3. Analogous results hold for nonlinear systems of the form

zDy'(z) = h(z, y(z), y(«z), /(«)) +/(z; <f>)

and can be obtained by considerations similar to those in the paper of

Harris [4].
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