TWO LIFTING THEOREMS

STUART P. LLOYD

ABSTRACT. It is assumed that the measure algebra involved has cardinality 2^{\aleph_0} , and it is assumed further that $2^{\aleph_0} = \aleph_1$. Then liftings exist when the σ -field is not necessarily complete, and strong Borel liftings exist in the locally compact σ -compact metric case.

1. Introduction. Let $(X_0, \mathcal{F}_0, \mu_0)$ be a probability space, let $B(X_0, \mathcal{F}_0)$ be the Banach algebra of bounded real \mathcal{F}_0 measurable functions on X_0 , the norm being $||f|| = \sup_x \{|f(x)| : x \in X_0\}$, and let $\mathcal{F}_0 = \{f \in B(X_0, \mathcal{F}_0): \int |f| d\mu_0 = 0\}$ be the closed ideal of μ_0 -null functions. The quotient Banach algebra $B(X_0, \mathcal{F}_0) / \mathcal{F}_0$ may be identified as the familiar $L_\infty(X_0, \mathcal{F}_0, \mu_0)$; let $q_0: B(X_0, \mathcal{F}_0) \to L_\infty(X_0, \mathcal{F}_0, \mu_0)$ be the quotient mapping. A lifting $\Lambda_0: L_\infty(X_0, \mathcal{F}_0, \mu_0) \to B(X_0, \mathcal{F}_0)$ is a selection of representative $\Lambda_0(f + \mathcal{F}_0) \in f + \mathcal{F}_0$ from each equivalence class $f + \mathcal{F}_0, f \in B(X_0, \mathcal{F}_0)$, in such a way that the representatives constitute a subalgebra of $B(X_0, \mathcal{F}_0)$; it is required also that $\Lambda_0(1 + \mathcal{F}_0) = 1$. That is, Λ_0 is an algebraic cross section of q_0 which preserves the unit: Λ_0 is an algebraic homomorphism, $q_0\Lambda_0 = (\text{identity}), \Lambda_0(1 + \mathcal{F}_0) = 1$. The proof in [1] that liftings exist requires that \mathcal{F}_0 be complete with respect to μ_0 . We show that \mathcal{F}_0 need not be complete provided: (i) the measure algebra (\mathcal{F}_0, μ_0) has cardinal 2^{\aleph_0} ; (ii) $2^{\aleph_0} = \aleph_1$ (the continuum hypothesis).

Suppose further that X_0 is a topological space, the bounded continuous real functions $C_b(X_0)$ are \mathcal{F}_0 measurable, and $\mu_0(U) > 0$ for open $U \neq \emptyset$. A strong lifting is a lifting Λ_0 such that $\Lambda_0(f + \mathcal{F}_0) = f$, $f \in C_b(X_0)$. Various sufficient conditions are known [1] for the existence of strong liftings, e.g., X_0 locally compact σ -compact metric. We prove here (with $2^{\aleph_0} = \aleph_1$) that strong Borel liftings exist in this last case; that is, strong liftings such that each representative is measurable with respect to the uncompleted σ -field of Borel subsets of locally compact σ -compact metric X_0 .

2. Representation spaces. Under the Gel'fand representation; $B(X_0, \mathcal{F}_0)$ is isometrically algebraically isomorphic to the continuous real functions

Presented to the Society, August 23, 1973; received by the editors January 1, 1973 and, in revised form, April 26, 1973.

AMS (MOS) subject classifications (1970). Primary 46G15.

Key words and phrases. Lifting theory.

[©] American Mathematical Society 1974

C(W) on a certain compact Hausdorff space W; let $\iota: C(W) \to B(X_0, \mathscr{F}_0)$ be the inverse isomorphism. This has adjoint $\iota^*: ba(X_0, \mathscr{F}_0) \to rca(W)$ when we identify the conjugate Banach space $[B(X_0, \mathcal{F}_0)]^*$ with the space $ba(X_0, \mathcal{F}_0)$ of bounded finitely additive set functions on σ -field \mathcal{F}_0 , and the conjugate Banach space $[C(W)]^*$ with the space rca(W) of regular Borel measures on W. We will assume without essential loss of generality that $B(X_0, \mathcal{F}_0)$ separates X_0 , i.e., if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ for some $f \in B(X_0, \mathcal{F}_0)$. Then with δ_x the point measure at x, the set $\{\iota^* \delta_x : x \in X_0\}$ constitutes a copy of X_0 contained as a dense subset of $W \subseteq w^*$ -rca(W); we identify W with the set $\{\delta_w : w \in W\} \subseteq w^*$ -rca(W) whenever convenient. A bounded real function f on $X_0 \subset W$ extends to a member of C(W)iff $f \in B(X_0, \mathcal{F}_0)$, and ι is represented as the restriction mapping $\iota g = g|X_0$, $g \in C(W)$. Each $E \in \mathcal{F}_0$ has closure $\operatorname{cl}_W E$ which is open, and the correspondence $E \leftrightarrow cl_W E$ is 1-1 between \mathscr{F}_0 and the open closed subsets of W. The σ -field of Baire subsets of W is generated by $\{cl_W E: E \in \mathcal{F}_0\}$, and if $\theta \in ba(X_0, \mathcal{F}_0)$ is given then $\iota^*\theta \in rca(W)$ is determined on the Baire subsets of W by $(\iota^*\theta)(\operatorname{cl}_W E) = \theta(E)$, $E \in \mathscr{F}_0$, and then on the Borel sets by regularity.

As a Banach lattice, $B(X_0, \mathcal{F}_0)$ is boundedly σ -complete $(=\aleph_0$ -reticulated): any countable subset of $B(X_0, \mathcal{F}_0)$ bounded above has a supremum in $B(X_0, \mathcal{F}_0)$; the isomorphic C(W) enjoys the same property. Dually, W is basically disconnected: disjoint open Baire subsets of W have disjoint open closures [3, Chapter VII]. Equivalently, the interior F° of any closed Baire set F is closed, so that a closed Baire set is of the form $(\operatorname{cl}_W E) \cup N$ with $E \in \mathcal{F}_0$ and N a closed nowhere dense Baire set. The following results from [2] will be used. If $N \subset W$ is a closed nowhere dense Baire set then $N = \lim_n \operatorname{cl}_W E_n$ for some sequence $E_1 \supset E_2 \supset \cdots$ in \mathcal{F}_0 such that $\lim_n E_n = \varnothing$. If $\theta \in ba(X_0, \mathcal{F}_0)$ is countably additive on \mathcal{F}_0 then $(\iota^*\theta)(N) = 0$ for every closed nowhere dense Baire set N.

Let $\mu=\iota^*\mu_0\in\operatorname{rca}(W)$ correspond to μ_0 , and let X be the closed support of μ in W. The ideal $\mathscr{I}=\iota^{-1}\mathscr{I}_0\subset C(W)$ which corresponds to \mathscr{I}_0 is clearly $\{f\in C(W):f(X)=0\}$, and the quotient mapping q_0 , isomorphic to the quotient mapping $C(W)\to C(W)/\mathscr{I}$, is isomorphic to the restriction mapping $q:C(W)\to C(X)$ given by $qf=f|X,\ f\in C(W)$. Space X is the Gel'fand space of $L_\infty(X_0,\mathscr{F}_0,\mu_0)$, and is hyperstonian with μ as category measure. That is, $L_\infty(X_0,\mathscr{F}_0,\mu_0)$ is isometrically algebraically isomorphic to C(X), X is extremally disconnected, and $\mu(A)=\mu(A^\circ)>0$ if $A^\circ\neq\varnothing$, Borel $A\subset X$. We denote by \mathscr{F} the class of open closed subsets of X; the sets $\{X\cap\operatorname{cl}_WE:E\in\mathscr{F}_0\}$ (not necessarily distinct) comprise \mathscr{F} . The measure algebra (\mathscr{F}_0,μ_0) is isomorphic to the quotient Boolean algebra $\mathscr{F}/(\operatorname{nowhere}$ dense sets).

The following relation between the closure operators in W and X is needed in the proof of Theorem 1.

LEMMA 1. If $U \subseteq W$ is an open Baire set then $X \cap \operatorname{cl}_W U = \operatorname{cl}_X (X \cap U)$.

PROOF. We have $\Phi = \operatorname{cl}_W U = U \cup N$ with Φ open closed and N a closed nowhere dense Baire set in W. Since $\mu(X \cap N) = 0$ and μ is category relative to X, $X \cap N$ is nowhere dense in X. The closure $\Theta = \operatorname{cl}_X(X \cap U) = (X \cap U) \cup N_1$ of open $X \cap U$ is open closed in extremally disconnected X. Thus

$$\Theta = [X \cap (\Phi - N)] \cup N_1 = (X \cap \Phi)\Delta[(X \cap N) - N_1],$$

and since Θ and $X \cap \Phi$ are each open closed and $X \cap N$ is nowhere dense, $\Theta = X \cap \Phi$. \square

3. Partial liftings. To a lifting $\Lambda_0: L_\infty(X_0, \mathscr{F}_0, \mu_0) \to B(X_0, \mathscr{F}_0)$ there corresponds an algebraic homomorphism $\Lambda: C(X) \to C(W)$ with the properties $q\Lambda = (\text{identity})$, $\Lambda 1 = 1$; we call Λ a lifting also. The adjoint $\Lambda^*: \text{rca}(W) \to \text{rca}(X)$ restricts to a mapping $\lambda: W \to X$ which is a retraction of W onto X. Conversely, such a retraction determines a lifting according to: $(\Lambda f)(w) = f(\lambda w)$, $w \in W$, $f \in C(X)$.

We denote by \mathscr{A} the set $\mathscr{A} = \{\alpha \subset C(X) : \alpha \text{ is a closed subalgebra of } C(X) \text{ containing the constants} \}$. Each $\alpha \in \mathscr{A}$ is isometrically algebraically isomorphic to $C(Z_{\alpha})$ for a certain compact Hausdorff space Z_{α} . If j_{α} : $C(Z_{\alpha}) \to C(X)$ is the injection onto α then $j_{\alpha}^*: \operatorname{rca}(X) \to \operatorname{rca}(Z_{\alpha})$ restricts to the quotient mapping $v_{\alpha}: X \to Z_{\alpha}$ associated with α , i.e., $(j_{\alpha}f)(x) = f(v_{\alpha}x)$, $x \in X$, $f \in C(Z_{\alpha})$.

By a partial lifting $\Lambda_{\alpha}: \alpha \to C(W)$ we will mean an algebraic homomorphism defined only on the subalgebra α of C(X) with the properties $q\Lambda_{\alpha}=$ (identity), $\Lambda_{\alpha}1=1$. Equivalent to Λ_{α} is the algebraic homomorphism $\tilde{\Lambda}_{\alpha}:C(Z_{\alpha})\to C(W)$ given by $\tilde{\Lambda}_{\alpha}=\Lambda_{\alpha}j_{\alpha}$ and such that $q\tilde{\Lambda}_{\alpha}=j_{\alpha}$, $\tilde{\Lambda}_{\alpha}1=1$. The adjoint $\tilde{\Lambda}_{\alpha}^*:\operatorname{rca}(W)\to\operatorname{rca}(Z_{\alpha})$ restricts to the partial retraction $\lambda_{\alpha}:W\to Z_{\alpha}$ dual to $\tilde{\Lambda}_{\alpha}$ and Λ_{α} , i.e., $\lambda_{\alpha}|X=v_{\alpha}$. Since $\tilde{\Lambda}_{\alpha}$ and j_{α}^{-1} are isometries, $\Lambda_{\alpha}=\tilde{\Lambda}_{\alpha}j_{\alpha}^{-1}$ is an isometry.

Let $\mathscr L$ denote the family $\mathscr L=\{\Lambda_\alpha\colon \alpha\in\mathscr A \text{ and } \Lambda_\alpha \text{ is a partial lifting with domain }\alpha\}$. An order < in $\mathscr L$ is defined by: $\Lambda_\alpha<\Lambda_\beta$ iff Λ_β extends Λ_α ; that is, $\alpha\subset\beta$ and $\Lambda_\beta|\alpha=\Lambda_\alpha$.

LEMMA 2. Any ascending chain in \mathcal{L} has an upper bound in \mathcal{L} .

PROOF. Suppose $\{\Lambda_{\alpha_{\nu}}: \nu \in M\}$ is an ascending chain in \mathscr{L} : M is a totally ordered indexing set and $\Lambda_{\alpha_{\mu}} < \Lambda_{\alpha_{\nu}}$ for $\mu \leq \nu \in M$. Define subalgebra γ of C(X) as $\gamma = \bigcup_{\tau} \{\alpha_{\tau}: \nu \in M\}$, and let $\alpha \in \mathscr{A}$ be the closure in C(X) of γ . An operator $\Lambda_{\nu}: \gamma \to C(W)$ is defined consistently on γ by the family

of its restrictions $\Lambda_{\gamma}|_{\alpha_{\mu}=\Lambda_{\alpha_{\mu}},\ \mu\in M}$, and one verifies easily that Λ_{γ} is an algebraic homomorphism with the properties $q\Lambda_{\gamma}=$ (identity), $\Lambda_{\gamma}1=1$. Since each $\Lambda_{\alpha_{\mu}},\ \mu\in M$, is an isometry, Λ_{γ} is an isometry, and so extends uniquely by continuity to an operator $\Lambda_{\alpha}:\alpha\to C(W)$. By continuity, Λ_{α} is an algebraic homomorphism with the properties $q\Lambda_{\alpha}=$ (identity), $\Lambda_{\alpha}1=1$; that is, $\Lambda_{\alpha}\in\mathscr{L}$. Since $\Lambda_{\alpha_{\mu}}<\Lambda_{\alpha},\ \mu\in M$, by construction, Λ_{α} is the upper bound sought. \square

Suppose $\alpha \in \mathscr{A}$ and $X_1 \in \mathscr{F}$ are given, and let $\beta \in \mathscr{A}$ be the algebra generated by $\{\alpha, \chi_{X_1}\}$. With $X_2 = X - X_1$, β consists of all $f \in C(X)$ of the form $f = f_1 \chi_{X_1} + f_2 \chi_{X_2}$ for some $f_1, f_2 \in \alpha$. We may rewrite this as $f = (f_1 + \mathscr{I}_1)\chi_{X_1} + (f_2 + \mathscr{I}_2)\chi_{X_2}$ where $\mathscr{I}_i = \{g \in \alpha : g\chi_{X_i} = 0\}$, i = 1, 2, are closed ideals in α ; the elements $(f_i + \mathscr{I}_i) \in \alpha/\mathscr{I}_i$, i = 1, 2, are then uniquely determined by $f \in \beta$. The space Z_{β} associated with β is the free union $Z_{\beta} = Z_{\alpha 1} \cup Z_{\alpha 2}$ of copies of the subsets $Z_{\alpha i} = v_{\alpha}X_i$, with α/\mathscr{I}_i isomorphic to $C(Z_{\alpha i})$, i = 1, 2.

Lemma 3. Suppose $\Lambda_{\alpha} \in \mathcal{L}$ and $X_1, X_2 = X - X_1 \in \mathcal{F}$ are given, and let $\beta \in \mathcal{A}$ be the algebra generated by $\{\alpha, \chi_{X_1}\}$. If $\Lambda_{\beta} \in \mathcal{L}$ exists such that $\Lambda_{\alpha} < \Lambda_{\beta}$ then open closed subsets W_1 and $W_2 = W - W_1$ of W are determined such that

- (i) $\Lambda_{\beta} f = (\Lambda_{\alpha} f_1) \chi_{W_1} + (\Lambda_{\alpha} f_2) \chi_{W_2} for f = (f_1 + \mathcal{I}_1) \chi_{X_1} + (f_2 + \mathcal{I}_2) \chi_{X_2} \in \beta$,
- (ii) $W_i \cap X = X_i$, i = 1, 2,
- (iii) $W_i \subset \lambda_{\alpha}^{-1} v_{\alpha} X_i$, i = 1, 2.

Conversely, if open closed W_1 and $W_2 = W - W_1$ in W are given satisfying (ii) and (iii) then (i) serves to define $\Lambda_{\beta} \in \mathcal{L}$ such that $\Lambda_{\alpha} < \Lambda_{\beta}$.

PROOF. Suppose $\Lambda_{\beta} \in \mathscr{L}$ is given such that $\Lambda_{\alpha} < \Lambda_{\beta}$. From $\chi_{X_1}^2 = \chi_X$ and $\chi_{X_2} = 1 - \chi_{X_1}$, and the fact that Λ_{β} is an algebraic homomorphism such that $\Lambda_{\beta}1 = 1$, we find that $\Lambda_{\beta}\chi_{X_i} = \chi_{W_i}$, i = 1, 2, for open closed subsets W_1 and $W_2 = W - W_1$ of W. Since $\mathscr{I}_i \subset \alpha$, $\chi_{X_i} \in \beta$, and $\mathscr{I}_i \chi_{X_i} = 0$, i = 1, 2, we must have

$$\Lambda_{\beta}(\mathscr{I}_{i}\chi_{X}) = (\Lambda_{\alpha}\mathscr{I}_{i})(\Lambda_{\beta}\chi_{X}) = (\Lambda_{\alpha}\mathscr{I}_{i})\chi_{W_{i}} = 0, \qquad i = 1, 2;$$

this is condition (iii). The property $q\Lambda_{\beta}$ =(identity) gives condition (ii). The converse arguments are similar. \Box

Theorem 1. Suppose $\Lambda_{\alpha} \in \mathcal{L}$ and $X_1 \in \mathcal{F}$ are given, and let $\beta \in \mathcal{A}$ be the subalgebra generated by $\{\alpha, \chi_{X_1}\}$. If Z_{α} is metrizable then partial liftings Λ_{β} exist which extend Λ_{α} .

PROOF. The conditions $W_i \subset \lambda_{\alpha}^{-1} v_{\alpha} X_i$, i=1, 2, of Lemma 3 are equivalent to $W_i \supset \lambda_{\alpha}^{-1} U_i$, i=1, 2, where $U_i = Z_{\alpha} - v_{\alpha} X_{3-i}$, i=1, 2, are disjoint open subsets of Z_{α} . If Z_{α} is metrizable the Borel sets are Baire sets, U_1 and U_2 are disjoint open Baire sets in Z_{α} , whence $\lambda_{\alpha}^{-1} U_1$ and $\lambda_{\alpha}^{-1} U_2$ are disjoint

open Baire sets in W. Using the fact that W is basically disconnected, we have that $\Phi_1 = \operatorname{cl}_W(\lambda^{-1}U_1)$ and $\Phi_2 = \operatorname{cl}_W(\lambda^{-1}U_2)$ are disjoint open closed subsets of W.

By Lemma 1,

$$X \cap \Phi_1 = \operatorname{cl}_X(X \cap \lambda_{\alpha}^{-1}U_1) = \operatorname{cl}_X(v_{\alpha}^{-1}U_1) = \operatorname{cl}_X(X - v_{\alpha}^{-1}v_{\alpha}X_2) \subseteq X_1,$$

since $X - v_{\alpha}^{-1}v_{\alpha}X_2 \subseteq X_1$ and X_1 is closed; similarly, $\Phi_2 \cap X \subseteq X_2$.

Let Γ_1 and $\Gamma_2 = W - \Gamma_1$ be any open closed subsets of W such that $X \cap \Gamma_i = X_i$, i = 1, 2. With $\Theta = W - (\Phi_1 \cup \Phi_2)$ open closed, define open closed W_1 and W_2 by $W_i = \Phi_i \cup (\Theta \cap \Gamma_i)$, i = 1, 2. It is clear that $W_2 = W - W_1$. Since $W_i \cap X = (\Phi_i \cap X) \cup (\Theta \cap X_i) \subset X_i$ and $\{W_1, W_2\}$, $\{X_1, X_2\}$ are partitions, we have necessarily $W_i \cap X = X_i$, i = 1, 2. Conditions (ii) and (iii) of Lemma 3 being satisfied, (i) gives the extension sought. \square

4. The Lifting theorems. The cardinal of the measure algebra (\mathcal{F}_0, μ_0) is either finite or at least 2^{\aleph_0} ; we assume from now on that the cardinal is 2^{\aleph_0} . We assume further that $2^{\aleph_0} = \aleph_1$, and we let $\{F_{\nu}: \nu < \aleph_1\}$ be a well ordering of the elements of \mathcal{F} .

THEOREM 2 (INCOMPLETE LIFTING THEOREM). If the measure algebra (\mathscr{F}_0, μ_0) has cardinal $2^{\aleph_0} = \aleph_1$ then liftings $\Lambda_0: L_{\infty}(X_0, \mathscr{F}_0, \mu_0) \to B(X_0, \mathscr{F}_0)$ exist.

PROOF. The parts of the transfinite induction are:

- (i) α_0 is the constants, Z_{α_0} is a singleton, $\Lambda_{\alpha_0} 1 = 1$.
- (ii) For $v < \aleph_1$ a successor ordinal, suppose $\{\Lambda_{\alpha\gamma}: \gamma < \nu\}$ is an ascending chain in $\mathscr L$ such that each $Z_{\alpha\gamma}$, $\gamma < \nu$, is metrizable; in particular, $Z_{\alpha\nu-1}$ is metrizable. Let α_{ν} be the algebra generated by $\{\alpha_{\nu-1}, \chi_{F\nu-1}\}$, and let $\Lambda_{\alpha\nu}$ be the partial lifting provided by Theorem 1. It is clear that $Z_{\alpha\nu}$ is metrizable, so that $\{\Lambda_{\alpha\gamma}: \gamma < \nu+1\}$ is an ascending chain in $\mathscr L$ such that each $Z_{\alpha\nu}$ is metrizable, $\gamma < \nu+1$.
- (iii) For $v < \aleph_1$ a limit ordinal, suppose $\{\Lambda_{\alpha_y}: \gamma < \nu\}$ is an ascending chain in $\mathscr L$ such that each Z_{α_y} , $\gamma < \nu$, is metrizable. Lemma 2 provides Λ_{α_v} on $\alpha_r = \operatorname{cl}_{C(X)} \bigcup_{\gamma < \nu} \alpha_\gamma$ such that $\{\Lambda_{\alpha_y}: \gamma < \nu+1\}$ is an ascending chain in $\mathscr L$. If $\sigma_\gamma \subset \alpha_\gamma$ is a countable set dense in α_γ , $\gamma < \nu$, then $\bigcup_{\gamma < \nu} \sigma_\gamma \subset \alpha_\nu$ is a countable set dense in α_γ , so that Z_{α_y} is metrizable.

By transfinite induction, there exists an ascending chain $\{\Lambda_{\alpha\gamma}: \gamma < \aleph_1\}$, and Lemma 2 provides an ascending chain $\{\Lambda_{\alpha\gamma}: \gamma \leq \aleph_1\}$. The algebra $\alpha_{\aleph_1} = \bigcup_{\nu < \aleph_1} \alpha_{\nu} \in \mathscr{A}$ contains every $\chi_{F_{\nu}}$, $\nu < \aleph_1$, and so is all of C(X). Thus the partial lifting $\Lambda_{\alpha\aleph_1}$ is a lifting. \square

Theorem 3 (Strong Borel lifting theorem). Let X_0 be a locally compact σ -compact metric space, let \mathcal{F}_0 be the Borel subsets of X_0 , let μ_0 be strictly positive on nonempty open sets, and assume $2^{\aleph_0} = \aleph_1$. Then

liftings $\Lambda_0: L_{\infty}(X_0, \mathcal{F}_0, \mu_0) \rightarrow B(X_0, \mathcal{F}_0)$ exist such that $\Lambda_0(f + \mathcal{I}_0) = f$, $f \in C_b(X_0)$.

PROOF. With $C_0(X_0)$ the continuous real functions vanishing at infinity, let $A_0 \subset C_b(X_0)$ be the algebra generated by $\{C_0(X_0), 1\}$; A_0 is isometrically algebraically isomorphic to $C(Z_{\alpha_0})$ where $Z_{\alpha_0} = X_0 \cup \{\infty\}$ is the one point compactification of X_0 if X_0 is noncompact, or $Z_{\alpha_0} = X_0$ if X_0 is compact. The assumption that μ_0 is strictly positive on nonempty open sets implies that for each $f \in A_0$, f is the unique continuous function in the class $f + \mathscr{I}_0 \in L_\infty(X_0, \mathscr{F}_0, \mu_0)$. Equivalently, a partial lifting $\Lambda_{\alpha_0} : \alpha_0 \to C(W)$ of the subalgebra $\alpha_0 = q\iota^{-1}A_0 \subset C(X)$ is determined such that $\Lambda_{\alpha_0}q\iota^{-1}f = \iota^{-1}f$, $f \in A_0$. The space Z_{α_0} associated with α_0 is the one defined above, and the assumption that X_0 is σ -compact implies that Z_{α_0} is metrizable.

We now apply transfinite induction; parts (ii) and (iii) are as in the proof of Theorem 2, but part (i) is: $\alpha_0 = q\iota^{-1}A_0$, Z_{α_0} and Λ_{α_0} as just described. We obtain a lifting $\Lambda: C(X) \to C(W)$ such that $\Lambda_{\alpha_0} < \Lambda$; the isomorphic $\Lambda_0: L_{\infty}(X_0, \mathscr{F}_0, \mu_0) \to B(X_0, \mathscr{F}_0)$ is such that $\Lambda_0(f + \mathscr{I}_0) = f, f \in A_0$.

If X_0 is compact we are done; suppose X_0 is noncompact. Since X_0 is assumed to be σ -compact, there exists $h \in C_0(X_0)$ such that h(x) > 0, $x \in X_0$. From

$$\Lambda_0(hf + \mathscr{I}_0) = [\Lambda_0(h + \mathscr{I}_0)][\Lambda_0(f + \mathscr{I}_0)], \quad f \in B(X_0, \mathscr{F}_0),$$

and $\Lambda_0(h+\mathcal{I}_0)=h>0$ we have

$$\Lambda_0(f+\mathscr{I}_0)=h^{-1}\Lambda_0(hf+\mathscr{I}_0), \qquad f\in B(X_0,\mathscr{F}_0).$$

If $f \in C_b(X_0)$ then $hf \in C_0(X_0)$ and $\Lambda_0(hf + \mathcal{I}_0) = hf$, giving $\Lambda_0(f + \mathcal{I}_0) = f$, $f \in C_b(X_0)$. That is, Λ_0 is a strong Borel lifting. \square

We conclude with the following remarks. In the proof of the lifting theorem given in [1] it is required that the subalgebras α involved in the partial liftings be boundedly complete; that is, the Z_{α} are extremally disconnected. In the induction step corresponding to Theorem 1 of the present paper the sets $U_1, U_2 \subset Z_{\alpha}$ have closures in Z_{α} which are disjoint and open closed, hence Baire, and these closures can replace U_1, U_2 in the argument. The induction step corresponding to Lemma 2 becomes much more difficult, however. The partial liftings $\Lambda_{\alpha_{\nu}}$, $\nu \in M$, must be extended not only to our $\alpha = \operatorname{cl}_{C(X)}[\bigcup \{\alpha_{\nu} : \nu \in M\}]$ (this is the elementary L_{∞} martingale theorem given above) but to the boundedly complete algebra generated by α ; this requires the completeness of \mathscr{F}_0 with respect to μ_0 [1, Theorem IV. 2].

ADDED IN PROOF. Theorem 2 of the present paper, but not Theorem 3, can be derived from the results of [4].

REFERENCES

- 1. A. Ionescu Tulcea and C. Ionescu Tulcea, *Topics in the theory of lifting*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 48, Springer-Verlag, New York, 1969. MR 43 #2185.
- 2. S. P. Lloyd, On finitely additive set functions, Proc. Amer. Math. Soc. 14 (1963), 701-704. MR 28 #4071.
- 3. Zbigniew Semadeni, Banach spaces of continuous functions. I, PWN, Warsaw, 1971.
- 4. J. von Neumann and M. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math. 25 (1935), 353-378.

MATHEMATICS AND STATISTICS RESEARCH CENTER, BELL TELEPHONE LABORATORIES, INC., MURRAY HILL, NEW JERSEY 07974