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TWO LUTING THEOREMS

STUART P.  LLOYD

Abstract. It is assumed that the measure algebra involved has

cardinality 2N<>; and it is assumed further that 2*»««t»i. Then

liftings exist when the ofield is not necessarily complete, and strong

Borel liftings exist in the locally compact a-compact metric case.

1. Introduction. Let (X0, ¿F0, /*„) be a probability space, let B(X0, ̂ 0)

be the Banach algebra of bounded real ^"0 measurable functions on X0,

the norm being ||/||=supi,{|/(x)|:xeir0}, and let J0={feB(X0, #"„):

j" l/l dp,o=0} be the closed ideal of /¿„-null functions. The quotient Banach

algebra B(X0,^0)/^0 may be identified as the familiar Lco(X0,ßr0, p,0);

let q0:B(X0, ^0)-*Lœ(XB,^0, p.0) be the quotient mapping. A lifting

A0 : Lm (X0, ̂ o, p0)->-B(X0, ̂ 0) is a selection of representative Ao(/+ JQ) e

f+yo f1"0111 each equivalence class /+./„,/g B(X0, ^0), in such a

way that the representatives constitute a subalgebra of B(X0,^r0); it is

required also that A0(l +,/„)= 1. That is, A0 is an algebraic cross section

of q0 which preserves the unit: A0 is an algebraic homomorphism,

q0A0=(identity), A0(l + </0)=1. The proof in [1] that liftings exist requires

that J% be complete with respect to /x0. We show that ^"0 need not be

complete provided: (i) the measure algebra (^0, p:0) has cardinal 2So;

(ii) 2No=N1 (the continuum hypothesis).

Suppose further that X0 is a topological space, the bounded continuous

real functions Cb(X0) are &~0 measurable, and p0(U)>0 for open U?¿0.

A strong lifting is a lifting A0 such that A0(/+,/„)=/,/g C„(Jf0). Various

sufficient conditions are known [1] for the existence of strong liftings,

e.g., X0 locally compact cr-compact metric. We prove here (with 2X°=N1)

that strong Borel liftings exist in this last case; that is, strong liftings such

that each representative is measurable with respect to the uncompleted

a-field of Borel subsets of locally compact c-compact metric X0.

2. Representation spaces. Under the Gel'fand representation; B(X0,^0)

is isometrically algebraically isomorphic to the continuous real functions
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C(W) on a certain compact Hausdorff space W; let i:C(W)-*-B(X0,J^)

be the inverse isomorphism. This has adjoint i*:ba(X0,^r0)-^-ica(W)

when we identify the conjugate Banach space [B(X0,^0)]* with the space

ba(X0, J%) of bounded finitely additive set functions on cr-field &0, and

the conjugate Banach space [C(H^)]* with the space rca^) of regular

Borel measures on W. We will assume without essential loss of generality

that B(X0, ^o) separates X0, i.e., if xx¿¿x2 then f(xx)^f(x2) for some

fe B(X0, &0). Then with ôx the point measure at x, the set {i*ôx:x e X0}

constitutes a copy of X0 contained as a dense subset of W<= w*-rca(W);

we identify W with the set {ôm : w e W}<=■ w*-rca( W) whenever convenient.

A bounded real function / on X0<=W extends to a member of C(W)

iff/e B(X0, J^o), and t is represented as the restriction mapping ig=g\X0,

g e C(W). Each £ e^~0 has closure cljp E which is open, and the corre-

spondence £«-^1^ £ is 1-1 between J^o and the open closed subsets of W.

The cr-field of Baire subsets of W is generated by {clw E:E e^,,}, and

if 0 eba(X0,^0) is given then i*0 erca(W) is determined on the Baire

subsets of W by (4*0)^1^ £)=0(£), £e J%, and then on the Borel sets

by regularity.

As a Banach lattice, B(X0,^r0) is boundedly cr-complete (=X0-

reticulated) : any countable subset of B(X0, ^0) bounded above has a

supremum in B(X0, ^0); the isomorphic C( W) enjoys the same property.

Dually, W is basically disconnected: disjoint open Baire subsets of W

have disjoint open closures [3, Chapter VII]. Equivalently, the interior

F° of any closed Baire set F is closed, so that a closed Baire set is of the

form (cljp £) UN with £ e ^0 and N a closed nowhere dense Baire

set. The following results from [2] will be used. If N<= If is a closed

nowhere dense Baire set then N=limn cljp En for some sequence

EjpE^ • ■ • in J% such that lim„ £n= 0. If 0 e ba(X0, &0) is countably

additive on J% then (i*6)(N)=0 for every closed nowhere dense Baire

set JV.
Let p=i*p0 e rca( W) correspond to p0, and let X be the closed support

of p, in W. The ideal J=rí ,/„<= C( W) which corresponds to ./„ is clearly

{fe C(W):f(X)=0}, and the quotient mapping q0, isomorphic to the

quotient mapping C(W)->C(W)l<f, is isomorphic to the restriction

mapping q:C(W)-*C(X) given by qf=f\X, feC(W). Space X is the
Gel'fand space of LX(X0, ̂ 0, p0), and is hyperstonian with p as category

measure. That is, LCO(X0, J%, p0) is isometrically algebraically isomorphic

to C(X), X is extremally disconnected, and p(A)=p(A°)>0 if A°j±0,

Borel A c X. We denote by & the class of open closed subsets of X; the

sets {XC\clw £: £ e ^0} (not necessarily distinct) comprise J^. The measure

algebra (^0, fi0) is isomorphic to the quotient Boolean algebra

^"/(nowhere dense sets).
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The following relation between the closure operators in W and X

is needed in the proof of Theorem 1.

Lemma 1.   If {/<= W is an open Baire set then Xr\c\w U=c\x(X(~\U).

Proof. We have <t>=clw U=UKJN with <D open closed and N a

closed nowhere dense Baire set in W. Since p,(XCiN)=0 and p, is category

relative to X, XC\N is nowhere dense in X. The closure Q=clx(Xr\U)=

(ATi^uJVj of open XC\U is open closed in extremally disconnected X.

Thus

0 = [X n (<J> - N)] U Ni = (X n <D)A[(JT nN)- NJ,

and since 0 and Xn$> are each open closed and Xr\N is nowhere dense,

0=jrn<I>.    D

3. Partial liftings. To a lifting A0:LX(X0,&0, p0)-+B(X0, J%) there

corresponds an algebraic homomorphism A:C(X)->-C(rV) with the

properties qA=(identity), Al = l; we call A a lifting also. The adjoint

A*:rca(rf)-*rca(A') restricts to a mapping X: W-+X which is a retraction

of W onto X. Conversely, such a retraction determines a lifting according

to:(Af)(w)=f(Xw), weWJe C(X).
We denote by si the set si ~{x<^C(X):x is a closed subalgebra of

C(X) containing the constants}. Each a e si is isometrically algebraically

isomorphic to C(ZX) for a certain compact Hausdorff space Zx. If/«:

C(Za)-*C(X) is the injection onto a then j*:rca.(X)-+rcdL(Zx) restricts

to the quotient mapping vx : X-*ZX associated with a, i.e., (jxf)(x)=f(vxx),

xeX,feC(Zx).
By a partial lifting Ax;x-+C(W) we will mean an algebraic homo-

morphism defined only on the subalgebra a of C(X) with the properties

qAx= (identity), Aal = 1. Equivalent to Aa is the algebraic homomorphism

ÀX:C(ZX)-+C(W) given by Âx=Axjx and such that9Äa=ya, X.l-1. The

adjoint Ä*:rca(lF)-»-rca(Za) restricts to the partial retraction Xx: W--Zx

dual to Ä„ and A„, i.e., Xx\X=vx. Since Ax and/"1 are isometries, Ax=Axj-1

is an isometry.

Let S£ denote the family ¿¡f={Ax: x e si and Aa is a partial lifting with

domain a}. An order < in 3? is defined by: Aa<A/3 iff A^ extends Ax;

that is, x<=ß and Aj3|a=AI.

Lemma 2.   Any ascending chain in S£ has an upper bound in £?.

Proof. Suppose {Aav : v e M) is an ascending chain in JS? : M is a

totally ordered indexing set and A(t/1<Aotv for pi^v e M. Define subalgebra

y of C(X) as y=\J, {xr:v e M}, and let xe si be the closure in C(X)

of y. An operator Ay:y^~C(W) is defined consistently on y by the family
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of its restrictions Ay|aíl=AaM, pe M, and one verifies easily that Ay is an

algebraic homomorphism with the properties qAy=(identity), A./l = l.

Since each AXfl, p e M, is an isometry, Ay is an isometry, and so extends

uniquely by continuity to an operator Ax:a.-*C(W). By continuity,

Ax is an algebraic homomorphism with the properties qAx=(identity),

Aal = l; that is, AxeáC. Since Aa/1<Aa, fieM, by construction, A,

is the upper bound sought.    D

Suppose aei and Xx elF are given, and let ß e si be the algebra

generated by {a, Xxj- With Xt—X—Xu ß consists of all fe C(X) of

the form f=fiXx1+AXx2 f°r some fi->he <*• We may rewrite this as

f=Ui+SJXxl+(f*+SJXxt where ><={*? 6 a:Wx=0}, 1-1,2, are
closed ideals in a; the elements (/,+</*) e a/j^, i"=l, 2, are then uniquely

determined by fe ß. The space Zß associated with ß is the free union

Zß=ZxX\jZx2 of copies of the subsets Zxi=vxXi, with a/^ isomorphic to

C(Zxi),i=l,2.

Lemma 3. Suppose Axe£f and Xx, X2=X—Xxe^ are given, and

let ß e si be the algebra generated by {a, xx }. If Aß e ££ exists such that

Aa<A/3 then open closed subsets Wx and W2= W— Wx of W are determined

such that

(i) Aßf= (Axfx)xWl+(Axf2)Xw2 forf= (fx+Jx)%Xl+(f2+J2)xx> 6 ß,
(ii) WinX=Xi,i=l,2,

(Hi) wtcx?vjrt,t-\,2.
Conversely, if open closed Wx and W2=W—WX in W are given satisfying

(ii) and (iii) then (i) serves to define Aße^f such that Aa< A^.

Proof. Suppose AßeaC is given such that A(I<A/3. From Xx¡=Xx

and %xt=\—Xx^ and tne ^act tnat -*% is an algebraic homomorphism

such that Apl = l, we find that Aßxx=%w., i—1,2, for open closed

subsets Wx and W2= W— Wx of W. Since */<<= a, xx¡ e ß> and •^<Zx,'"0>

i'=l, 2, we must have

M'iXx) = (KSMAvZx) = (KSdZwt = 0,       I— 1,2;

this is condition (iii). The property c/A/3= (identity) gives condition (ii).

The converse arguments are similar.    D

Theorem 1. Suppose Axe£P and Xxe^ are given, and let ß e si

be the subalgebra generated by {a, Xx )• If Zx is metrizable then partial

liftings Aß exist which extend Ax.

Proof. The conditions ^cftlj, /=1, 2, of Lemma 3 are equiva-

lent to W^X^Ui, ¿=1,2, where Ui=Zx—vxX3_i, i=l,2, are disjoint

open subsets of Zx. lfZx is metrizable the Borel sets are Baire sets, Ux and

U2 are disjoint open Baire sets in Zx, whence X~*UX and X^U2 are disjoint
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open Baire sets in W. Using the fact that W is basically disconnected,

we have that ^>1=clw(X-1U1) a°d ^>2=clw(X-1U2) are disjoint open closed

subsets of W.

By Lemma 1,

x n ^ = clA.(jr n jc*öi) = dx(^Cü = c\x(X - v-\x2) c jf,,

since A'—v~1vttA'2c:A'1 and A\ is closed; similarly, OäOA'cAV

Let rt and r2=W—T1 be any open closed subsets of W such that

XcWt—Xi, z"=l,2. With 0=W-(<1>1vj02) open closed, define open

closed Wx and W2 by IF—O.-Uionr,-), /'=1, 2. It is clear that W2= W-

Wx. Since ^inA'=(<DinA')U(0nA'i)c:Ari and {Wlt W2), {Xx, X2} are

partitions, we have necessarily Wi(~\X=Xi, la« 1,2. Conditions (ii) and

(iii) of Lemma 3 being satisfied, (i) gives the extension sought.    D

4. The Lifting theorems. The cardinal of the measure algebra (^"0, p.„)

is either finite or at least 2K° ; we assume from now on that the cardinal

is 2No. We assume further that 2Ko=X1, and we let {Fv:v<X.i} be a well

ordering of the elements of ÍF.

Theorem 2 (Incomplete lifting theorem). If the measure algebra

0Fo, /¿o) has cardinal 2K»=S1 then liftings A0:LX(X0,J%, p,0)-+B(X0,PJ

exist.

Proof.   The parts of the transfinite induction are:

(i) <x0 is the constants, Zao is a singleton, Aa 1 = 1.

(ii) For v<Sj a successor ordinal, suppose {Axy:y<v} is an ascending

chain in JSP such that each Zxy, y<v, is metrizable; in particular, Zav-1

is metrizable. Let a„ be the algebra generated by {xv_x, Xfv-i)> anc* 'et A,v

be the partial lifting provided by Theorem 1. It is clear that ZXy is metriz-

able, so that {Aay:yO+l} is an ascending chain in ££ such that each

Zxy is metrizable, y<v+l.

(iii) For v<^.l a limit ordinal, suppose {Axy:y<v} is an ascending chain

in S£ such that each Zxy, y<v, is metrizable. Lemma 2 provides Aav on

a,=clC(Y) Uv<v ay sucn triat {Axy:y<v+l} is an ascending chain in =§?.

If o-y<= Ky is a countable set dense in xY, y<v, then (Jyo ffyc a* is a count-

able set dense in av, so that Zav is metrizable.

By transfinite induction, there exists an ascending chain {Aav:y<S1},

and Lemma 2 provides an ascending chain {Aay:y_X1}. The algebra

a8i=U»<sia>6^ contains every %Fw, v<X1; and so is all of C(X).

Thus the partial lifting Aa    is a lifting.    D

Theorem 3 (Strong Borel lifting theorem). Let X0 be a locally

compact o-compact metric space, let ^"0 be the Borel subsets of X0, let

p0 be strictly positive on nonempty open sets, and assume 2N°=X1. Then
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liftings A0:Lx(X0,ßr0,p0)^B(X0,ßr0) exist such that A0(/+./0)=/,

/e Cb(X0).

Proof. With C0(X0) the continuous real functions vanishing at infinity,

let /!„<= Cb(X0) be the algebra generated by {C0(X0), I}; A0 is isometrically

algebraically isomorphic to C(ZXe) where ZXo=X0U{ao} is the one point

compactification of X0 if X0 is noncompact, or ZXo=X0 if X0 is compact.

The assumption that p0 is strictly positive on nonempty open sets implies

that for each fe A0, f is the unique continuous function in the class

f+J0e L^X,),^,,, p0). Equivalently, a partial lifting Ax<¡ : a0-*C( W)

of the subalgebra x0=qr1A0<^ C(X) is determined such that Ax<iqr1f=r1f,

fe A0. The space Zx<¡ associated with <x0 is the one defined above, and the

assumption that X0 is cr-compact implies that Z„o is metrizable.

We now apply transfinite induction ; parts (ii) and (iii) are as in the proof

of Theorem 2, but part (i) is: a0=c/t_M0, Zx¡¡ and Aao as just described.

We obtain a lifting A:C(X)-+C(W) such that ASI(i<A; the isomorphic

A0:LX(X0, 3FÜ, p0)-^B(X(¡, J%) is such that A0(f+Jr0)=f,fe A0.

If X0 is compact we are done; suppose X0 is noncompact. Since X0 is

assumed to be cr-compact, there exists h e C0(X0) such that h(x)>0,

x e X0. From

Ao(hf + A) = [A0(h + J0)\ [A0(/+^o)],      fe B(X0, J%),

and A0(A-|-^'0)=ä>0 we have

A„(/ + Jo) = h-lAa(hf + y0),      fe B(X0, ¿F0).

Mfe Cb(X0) then hfe C0(X0) and A0(hf+J?0)=hfi giving A0(f+yo)=f
fe Cb(X0). That is, A0 is a strong Borel lifting.    D

We conclude with the following remarks. In the proof of the lifting

theorem given in [1] it is required that the subalgebras a involved in the

partial liftings be boundedly complete; that is, the Zx are extremally

disconnected. In the induction step corresponding to Theorem 1 of the

present paper the sets Ux, U2<^ZX have closures in Zx which are disjoint

and open closed, hence Baire, and these closures can replace Ux, U2 in

the argument. The induction step corresponding to Lemma 2 becomes

much more difficult, however. The partial liftings AJv, v e M, must be

extended not only to our <x=clC(jc)[U {a.v:v e M}] (this is the elementary

Lx martingale theorem given above) but to the boundedly complete

algebra generated by a; this requires the completeness of ^0 with respect

to p0 [1, Theorem IV. 2].

Added in proof. Theorem 2 of the present paper, but not Theorem

3, can be derived from the results of [4].
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