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TWO LIFTING THEOREMS

STUART P. LLOYD

ABSTRACT. It is assumed that the measure algebra involved has
cardinality 280, and it is assumed further that 2No=y,. Then
liftings exist when the o-field is not necessarily complete, and strong
Borel liftings exist in the locally compact g-compact metric case.

1. Introduction. Let (X,, #,, u,) be a probability space, let B(X,, F,)
be the Banach algebra of bounded real &%, measurable functions on X,,
the norm being | f| =sup,{| f(x)|:x € X,}, and let F,={f€ B(X,, F,):
§ 1f1 duy=0} be the closed ideal of u,-null functions. The quotient Banach
algebra B(X,, #,)/#, may be identified as the familiar L, (X,, %o, to);
let go:B(Xy, F o)Ly (X0, ¥, 14o) be the quotient mapping. A lifting
Ao: Ly (Xos F o, po)—>B(Xo, &) is a selection of representative Aqy(f+.5,) €
f+F, from each equivalence class f+.%,, f€ B(X,, ¥,), in such a
way that the representatives constitute a subalgebra of B(X,, %); it is
required also that Ag(1+.#¢)=1. That is, A, is an algebraic cross section
of g, which preserves the unit: A, is an algebraic homomorphism,
9oAAo= (identity), Ag(1+.F()=1. The proof in [1] that liftings exist requires
that &, be complete with respect to u,. We show that %, need not be
complete provided: (i) the measure algebra (%, u,) has cardinal 2¥%v;
(ii) 2®%=K, (the continuum hypothesis).

Suppose further that X, is a topological space, the bounded continuous
real functions C,(X,) are &, measurable, and u,(U)>0 for open Uz & .
A strong lifting is a lifting A, such that Ay(f+Fo)=f, f€ C,(X,). Various
sufficient conditions are known [1] for the existence of strong liftings,
e.g., X, locally compact o-compact metric. We prove here (with 28e=N)
that strong Borel liftings exist in this last case; that is, strong liftings such
that each representative is measurable with respect to the uncompleted
o-field of Borel subsets of locally compact o-compact metric X,

2. Representationspaces. Under the Gel'fand representation; B(X,, %)
is isometrically algebraically isomorphic to the continuous real functions
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C(W) on a certain compact Hausdorff space W; let i: C(W)—B(X,, F )
be the inverse isomorphism. This has adjoint ¢*:ba(X,, & )—rca(W)
when we identify the conjugate Banach space [B(X,, % ,)]* with the space
ba(X,, #,) of bounded finitely additive set functions on o-field &, and
the conjugate Banach space [C(W)]* with the space rca(W) of regular
Borel measures on W. We will assume without essential loss of generality
that B(X,, #,) separates X,, i.c., if x;%x, then f(x;)#f(x;) for some
[ € B(Xy, ). Then with ¢, the point measure at x, the set {¢*d,:x € X}
constitutes a copy of X, contained as a dense subset of W< w*-rca(W);
we identify W with the set {0,,:w € W}<w*-rca(W) whenever convenient.
A bounded real function f on X,<W extends to a member of C(W)
iff f € B(X,, #,), and ¢ is represented as the restriction mapping (g =g|X,,
g € C(W). Each E € #, has closure cly, E which is open, and the corre-
spondence E«cly, E is 1-1 between % and the open closed subsets of W.
The o-field of Baire subsets of W is generated by {cly, E:E € %,}, and
if 0 € ba(X,, #) is given then ¢*6 € rca(W) is determined on the Baire
subsets of W by (¢*0)(clyy E)=0(E), E € #,, and then on the Borel sets
by regularity.

As a Banach lattice, B(X,,#,) is boundedly o-complete (=R,
reticulated): any countable subset of B(X,, %,) bounded above has a
supremum in B(X,, %,); the isomorphic C(W) enjoys the same property.
Dually, W is basically disconnected: disjoint open Baire subsets of W
have disjoint open closures [3, Chapter VII]. Equivalently, the interior
F° of any closed Baire set F is closed, so that a closed Baire set is of the
form (cly E)UN with E€ %, and N a closed nowhere dense Baire
set. The following results from [2] will be used. If Nc W is a closed
nowhere dense Baire set then N=lim,cly, E, for some sequence
E,D>E,>---in &, such that lim, E,=g. If 6 € ba(X,, #,) is countably
additive on &, then (¢*6)(N)=0 for every closed nowhere dense Baire
set V.

Let u=t*u, € rca(W) correspond to u,, and let X be the closed support
of uin W.Theideal f =1 #,< C(W) which corresponds to £, is clearly
{fe C(W):f(X)=0}, and the quotient mapping ¢,, isomorphic to the
quotient mapping C(W)—C(W)/.#, is isomorphic to the restriction
mapping ¢:C(W)—~C(X) given by g¢f=f|X, fe C(W). Space X is the
Gel'fand space of L, (X,, %, to), and is hyperstonian with u as category
measure. That is, L, (X,, %, i) is isometrically algebraically isomorphic
to C(X), X is extremally disconnected, and u(4)=u(4°)>0 if A°# >,
Borel A< X. We denote by & the class of open closed subsets of X; the
sets {XNcly, E:E € % ,} (not necessarily distinct) comprise & . The measure
algebra (&, uo) is isomorphic to the quotient Boolean algebra
& [(nowhere dense sets).
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The following relation between the closure operators in W and X
is needed in the proof of Theorem 1.

LemMa 1. If U< W is an open Baire set then X Ncly, U=clx(XNU).

Proor. We have ®=cl;; U=UUN with ® open closed and N a
closed nowhere dense Baire set in W. Since u(XNN)=0 and u is category
relative to X, XNN is nowhere dense in X. The closure @=clx(XNU)=
(XNU)UN; of open XNU is open closed in extremally disconnected X.
Thus

O=[XN(@—=N]UN, =X NnDA[X NN) — N,

and since © and XN® are each open closed and X NN is nowhere dense,
0=Xnd. O

3. Partial liftings. To a lifting Ay:L,(Xo, %, to)—B(Xo, F,) there
corresponds an algebraic homomorphism A:C(X)—C(W) with the
properties gA=(identity), Al=1; we call A a lifting also. The adjoint
A*:rca(W)—rca(X) restricts to a mapping A: W—X which is a retraction
of W onto X. Conversely, such a retraction determines a lifting according
to: (Af)(w)=f(Aw), w e W, fe C(X).

We denote by & the set &/={a<=C(X):a is a closed subalgebra of
C(X) containing the constants}. Each « € & is isometrically algebraically
isomorphic to C(Z,) for a certain compact Hausdorff space Z,. If j,:
C(Z))—~C(X) is the injection onto a then jj:rca(X)—rca(Z,) restricts
to the quotient mapping v,: X—Z, associated with «, i.e., (j, f)(x)=f(v,x),
xeX, feC(Z).

By a partial lifting A,:a—C(W) we will mean an algebraic homo-
morphism defined only on the subalgebra « of C(X) with the properties
gA,=(identity), A,1=1. Equivalent to A, is the algebraic homomorphism
A,:C(Z)—~C(W) given by A,=A,j, and such that gA,=j., A,1=1. The
adjoint A%:rca(W)—rca(Z,) restricts to the partial retraction 4,: W—Z,
dualto A,and A,,i.e., 4|X=v,. Since A, and j;* are isometries, A, = A,j;*
is an isometry.

Let &£ denote the family £ ={A,:« € & and A, is a partial lifting with
domain «}. An order < in # is defined by: A,<A; iff Ay extends A,;
that is, =g and Agla=A,.

LEMMA 2. Any ascending chain in £ has an upper bound in & .

PROOF. Suppose {A, :» € M} is an ascending chain in &£: M is a
totally ordered indexing set and A,,<A,, for u=» € M. Define subalgebra
y of C(X) as y=UJ, {«,:» € M}, and let « € & be the closure in C(X)
of y. An operator A,:y—C(W) is defined consistently on y by the family
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of its restrictions A, |«,=A,,, u € M, and one verifies easily that A, is an
algebraic homomorphism with the properties gA,=(identity), A, 1=1.
Since each A,”, 1 € M, is an isometry, A, is an isometry, and so extends
uniquely by continuity to an operator A,:a—C(W). By continuity,
A, is an algebraic homomorphism with the properties gA,= (identity),
A=1; that is, A,€Z. Since A, ,<A,, p€M, by construction, A,
is the upper bound sought. [

Suppose « € & and X, € % are given, and let € &/ be the algebra
generated by {a, xx,}. With X,=X—X;, B consists of all fe C(X) of
the form f=fiyxx +fixx, for some f,,f, € x. We may rewrite this as
=+ Drx, +(fo+FP)rx, where F.={geagyx =0}, i=1,2, are
closed ideals in «; the elements (f;+.#,) € «/.#,, i=1, 2, are then uniquely
determined by f€ . The space Z; associated with g is the free union
Zy=2Z,,UZ,, of copies of the subsets Z,,=v,X;, with a/.#; isomorphic to
Cc(Z,), i=1,2.

LemMma 3. Suppose A, e ¥ and X,, X,=X—X,€F are given, and
let B € o be the algebra generated by {«, xx }. If Ag € £ exists such that
A, < Ay then open closed subsets Wy, and Wy=W—W, of W are determined
such that

@) Asf=Af)rw, + A fo)rw, for f=(L+FD1x,+ (Lot F)rx,EB,
@) W,nXx=X,, i=1,2,

(i) W,cil,X,;, i=1,2.

Conversely, if open closed W, and W,=W—W, in W are given satisfying
(ii) and (iii) then (i) serves to define Ay € L such that A,<A,.

PROOF. Suppose Az €.Z is given such that A,<A; From y% =yx
and yy,=1—xx,, and the fact that A; is an algebraic homomorphism
such that Agl=1, we find that AB;(X‘=1W‘,, i=1, 2, for open closed
subsets W, and W,=W—W, of W. Since J;<a, xx, € B, and J;xx =0,
i=1, 2, we must have

M(Fixx) = AI)Dp2x) = AIDw, =0,  i=1,2;

this is condition (iii). The property gA,=(identity) gives condition (ii).
The converse arguments are similar. [

THEOREM 1. Suppose A, € ¥ and X,€F are given, and let f € o
be the subalgebra generated by {«, xx }. If Z, is metrizable then partial
liftings Ay exist which extend A,.

Proor. The conditions W;<A;'v, X, i=1, 2, of Lemma 3 are equiva-
lent to W,2A;'U,, i=1,2, where U;=Z,—v,X; ,;, i=1, 2, are disjoint
open subsets of Z,. If Z, is metrizable the Borel sets are Baire sets, U, and
U, are disjoint open Baire sets in Z,, whence A7 U, and 47U, are disjoint
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open Baire sets in W. Using the fact that W is basically disconnected,
we have that ®, =cly,(A71U,) and ®,=cly,(1-1U,) are disjoint open closed
subsets of W.

By Lemma 1,

X NO, =cly(X N A7V, = cly(v7'U) = clx(X — v7'0,.X,) < X,

since X—v;'v,X,< X; and X, is closed; similarly, ®,NX<X,.

Let I'; and [',=W-—T, be any open closed subsets of W such that
XnT;=X,, i=1,2. With O=W—(®,U®d,) open closed, define open
closed W, and W, by W,;=®,u(©NT)), i=1, 2. It is clear that W,=W—
W,. Since W,NX=(d, ﬁX)U(G)hX)CX and {W,, W,}, {Xi, X,} are
partitions, we have necessarily W;NX=X,, i=1, 2. Conditions (ii) and
(iii) of Lemma 3 being satisfied, (i) gives the extension sought. (]

4. The Lifting theorems. The cardinal of the measure algebra (&, )
is either finite or at least 2X°; we assume from now on that the cardinal
is 2%, We assume further that 2%=R,, and we let {F,:»<¥,} be a well
ordering of the elements of &.

THEOREM 2 (INCOMPLETE LIFTING THEOREM). If the measure algebra
(F o, to) has cardinal 2%=R, then liftings Ay: L, (Xo, F o, te)—>B(Xo, F )
exist.

Proor. The parts of the transfinite induction are:
(i) o is the constants, Z,  is a singleton, A, 1=1.

(ii) For v<X, a successor ordinal, suppose {A,,:y<7} is an ascending
chain in & such that each Z,,, y<v, is metrizable; in particular, Z,,_,
is metrizable. Let «, be the algebra generated by {w,_;, xr,_,}, and let A,
be the partial lifting provided by Theorem 1. It is clear that Z,, is metriz-
able, so that {A,,:y<v+1} is an ascending chain in &£ such that each
Z,, is metrizable, y <v+1.

(iii) For »<R, a limit ordinal, suppose {A,,:y <7} is an ascending chain
in £ such that each Z,,, y<v, is metrizable. Lemma 2 provides A,, on
a,=cle(x) Uy<v &, such that {A,y y<v+1} is an ascending chain in .#.
Ifo,ca,isa countable set dense in «,,, y<v, then {J, 7<r Oy S X, is a count-
able set dense in «,, so that Z, is metrizable.

By transfinite induction, there exists an ascending chain {A,y:y<Rl},
and Lemma 2 provides an ascending chain {A,,:y=R,}. The algebra
%, =U,<x, % € & contains every xp,, v<X,, and so is all of C(X).
Thus the partial lifting A‘m is a lifting. O

THEOREM 3 (STRONG BOREL LIFTING THEOREM). Let X, be a locally
compact o-compact metric space, let & be the Borel subsets of X,, let
o be strictly positive on nonempty open sets, and assume 2%=X,. Then
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liftings Ag:Lo(Xo, & o, o) —>B(Xo, F,) exist such that Ay(f+So)=f,
€ G(Xo).

Proor. With Cy(X,) the continuous real functions vanishing at infinity,
let A,<= C,(X,) be the algebra generated by {C,(X,), 1}; 4, is isometrically
algebraically isomorphic to C(Z, ) where Z, = X,U{} is the one point
compactification of X, if X, is noncompact, or Z, =X, if X, is compact.
The assumption that y, is strictly positive on nonempty open sets implies
that for each fe A4,, f is the unique continuous function in the class
S+ Fo€ L,(Xy, F, uo). Equivalently, a partial lifting A, :xq—C(W)
of the subalgebra a,=qt"14,< C(X) is determined such that A, gc™f=c"1f,
f€ A,. The space Z, associated with «, is the one defined above, and the
assumption that X, is s-compact implies that Z, is metrizable.

We now apply transfinite induction; parts (ii) and (iii) are as in the proof
of Theorem 2, but part (i) is: ag=g¢™'4,, Z, and A, as just described.
We obtain a lifting A:C(X)—~C(W) such that A, <A; the isomorphic
Ag: L (Xo, Fo, tho)—>B(X,y, F,) is such that Ay(f+Fo)=f, f€ A,.

If X, is compact we are done; suppose X, is noncompact. Since X, is
assumed to be o-compact, there exists 4 € Cy(X,) such that h(x)>0,
x € X,. From

Mo(Bf + Fo) = [Ao(h + FIIA(f+F)],  f€B(Xo, Fy),
and Ay(h+F)=h>0 we have V
A(f + Fo) = (B + Fy), fE€B(X,, Fy).

If fe C,(X,) then hf € Cy(X,) and Ay(hf+Fo)=hf, giving Ay(f+Fo)=f,
f€ Cy(X,). That is, A, is a strong Borel lifting. O

We conclude with the following remarks. In the proof of the lifting
theorem given in [1] it is required that the subalgebras « involved in the
partial liftings be boundedly complete; that is, the Z, are extremally
disconnected. In the induction step corresponding to Theorem 1 of the
present paper the sets U;, U, < Z, have closures in Z, which are disjoint
and open closed, hence Baire, and these closures can replace U,, U, in
the argument. The induction step corresponding to Lemma 2 becomes
much more difficult, however. The partial liftings A,,, » € M, must be
extended not only to our a=clgx,[UJ {«,:¥ € M}] (this is the elementary
L, martingale theorem given above) but to the boundedly complete
algebra generated by «; this requires the completeness of %, with respect
to u, [1, Theorem IV. 2].

ADDED IN PROOF. Theorem 2 of the present paper, but not Theorem
3, can be derived from the results of [4].
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