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TOPOLOGICAL ALGEBRAS WITH A GIVEN DUAL

AJIT KAUR CHILANA1

Abstract. Given an algebra E and a total subspace E' of its

algebraic dual, we obtain necessary and sufficient conditions in

terms of E' for the existence of an /4-convex or a locally /n-convex

topology on E compatible with duality (E, E'). It has also been

proved that if E with the weak topology w(E, £') is the closed

linear hull of a bounded set and has hypocontinuous multiplication

then it is locally /«-convex.

1. Introduction. Let £ be a complex (or real) algebra and £' be a

total subspace of the algebraic dual £*. To avoid repetitions we use the

notation, terminology and results in [3] and [4] without specifications.

An algebra with a locally convex linear topology for which multiplication

is separately continuous will be called a locally convex algebra. An abso-

lutely convex set B in £ is called right (left) A-convex if it absorbs Bx (xB)

for each x e E, it will be called A-convex if it is both right and left A-

convex. A locally convex algebra is called (right, left) A-convex if there

exists a basis of (right, left) ^-convex neighbourhoods of zero. Multi-

plication in a locally convex algebra will be said to be right (left) hypo-

continuous if given a neighbourhood U of o and a bounded set B there

exists a neighbourhood V of o satisfying VB<^ U (BV<= U). We say that

multiplication is hypocontinuous if it is both right and left hypocontinuous.

Gulick [5] has, however, called right hypocontinuity by hypocontinuity.

In §2 we answer the following question asked by Cochran [4].

(3.7) Under what conditions, in terms of £', does 2(£, £') or %(£, £')—

the finest ^-convex or locally m-convex topology on £ compatible with

duality (£, £')—exist?

It is known ([3] and [9], MR 41 #7435) that for £ with the weak topol-

ogy w(E, £') the conditions of joint continuity of multiplication, of A-

convexity and of local wt-convexity are mutually equivalent. We prove
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in §3 that if (£, w(E, £')) is the closed linear hull of a bounded subset

of itself then the condition of hypocontinuity of multiplication is also

equivalent to all these conditions.

For y e E and/6 £*, the right y-multiplicative translate fy and the left

y-multiplicative translate yf off are given by fy(x)=f(xy) and vf(x)=f(yx)

for xeE respectively. For yeE and £<=£*, let S(y)={f(y):fe S},

S={fy:feS) and yS={yf:feS}.

2. Topologies on £ compatible with duality (£, £').

(2.1) Definition. A set S<=£* is called collectionwise multiplicative

if S(xy)^ S(x)S(y) for all x, y e E.

(2.2) Definition. A set Sc£* is called collectionwise right (left)

multiplicative-translation invariant if for each y £ £ there is p„^0 satisfying

Sy(x)<^ pyS(x) („S(x)c; pyS(x)) for all x e E. S will be called collectionwise

multiplicative-translation invariant if it is both collectionwise right and

collectionwise left multiplicative-translation invariant.

It is easy to see that every collection of multiplicative linear functionals

is collectionwise multiplicative and every balanced, w(E*, £)-bounded,

collectionwise multiplicative subset of £* is collectionwise multiplicative-

translation invariant. Also an arbitrary union of collectionwise multi-

plicative sets is collectionwise multiplicative and a finite union of balanced

collectionwise (right, left) multiplicative-translation invariant sets is

collectionwise (right, left) multiplicative-translation invariant.

(2.3) Lemma. Let 5<=£' be balanced and w(E', E)-compact, and

let S° be its polar in E.

(i) 5° is idempotent if and only if S is collectionwise multiplicative.

(ii) 5° is (right, left) A-convex if and only if S is collectionwise (right,

left) multiplicative-translation invariant.

Proof,    (i) Sufficiency is clear.

Necessity. For x e E, let p(x)=sup{\f(x)\ :fe S}. Since S is w(E', £)-

compact, p(x)<oo and there is an fe S (depending on x) satisfying

p(x)=\f(x)\. Because S is balanced, g=signum/(x) -/is in S. So p(x)=

g(x) for some g in S. Also S°={x e E:p(x)^l} and p is its Minkowski

functional. Now S° is idempotent, so p is submultiplicative i.e. />(xj) =

p(x)p(y) for all x, y in £.

Let x, y e E and fe S. Then \f(xy)\^p(x)p(y). So there is a scalar A

such that |A|^1 and f(xy)=Xp(x)p(y). Also there exist g and A in S

(depending on x and y respectively) satisfying p(x)=g(x) and p(y)=h(y).

If gl=Xg then gj^eS. Thus f(xy) =gl(x)h(y) e S(x)S(y). Hence S(xy)c

S(x)S(y) for all x, y e E and S is collectionwise multiplicative.

(ii) Sufficiency is clear.
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Suppose S° is right /4-convex. For yeE there is Xy>0 such that

S°y^ XyS°. If p is as in the proof of (i) above then p satisfies all other

properties except that submultiplicativity is replaced by p(xy)<Xyp(x)

for all x,yeE. So \f(xy)\-^p(xy)^Xyp(x). Therefore, f(xy)=f¿Xyp(x)
for some ¡j. with |/u|^l. Let g2=fig, where g e S is such that p(x)=g(x).

Then/(xy)=A¡,g2(x). So S(xy)<= XyS(x) for all x, y e E. Hence 5 is collec-

tionwise right multiplicative-translation invariant. Similarly we can prove

for other parts.

(2.4) Theorem. There exists a locally m-convex topology on E com-

patible with duality (£, £') if and only if there exists a family if of absolutely

convex, w(E', E)-compact, collectionwise multiplicative sets in £' that cover

£'.

(2.5) Corollary. The Mackey topology t(£, £')=#(£, £') if and

only if every absolutely convex, w(E', E)-compact set is contained in some

absolutely convex, w(E', E)-compact, collectionwise multiplicative set

in £'.

(2.6) Theorem. There exists a (right, left) A-convex topology on E

compatible with duality (£, £') if and only if there is a family if of absolutely

convex, w(E', E)-compact, collectionwise (right, left) multiplicative-

translation invariant sets in £' that cover £'.

(2.7) Corollary. t(£, £')=S(£, £') if and only if every absolutely

convex, w(E', E)-compact subset of £' is contained in some absolutely

convex, w(E', E)-compact, collectionwise multiplicative-translation in-

variant set.

(2.8) Remark. Since the existence of %(E, £') (£(£, £')) is equivalent

to the existence of some locally /«-convex (/1-convex) topology on £

compatible with (£, £'), Theorems (2.4) and (2.6) give an answer to

question (3.7) in [4].

(2.9) Remark. If there are both /4-convex and locally /«-convex

topologies on £ compatible with (£, £') then %(E, £')=2(£, £') if and

only if every absolutely convex, w(E', £)-compact, collectionwise

multiplicative-translation invariant set in £' is contained in an absolutely

convex, w(E', £)-compact, collectionwise multiplicative set in £'. This

gives a partial answer to problem (3.6) in [4].

(2.10) Example. Let £ be the algebra of complex (or real) polynomials

without constant term and £' be the subspace of £* generated by {g,:

z=l,2, •••}, where gi(ej)=bij, e,(x)=x' for i,j=l, 2, ■ ■ ■ . Then

(£, w(E, £')) is a locally /«-convex algebra having no nonzero continuous

multiplicative linear functionals (see Proposition 3 and discussion there-

after in [8]). By Theorem (2.4) there is a family ¡f of absolutely convex,
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w(E', £)-compact, collectionwise multiplicative sets in £' that cover £'.

In fact, if G„={/7g!:l^/^n}, then its absolutely convex, w(E', £)-

closed hull Hn in £' is w(E', £)-compact. Also the polar G° of Gn in £

is idempotent and /7°=(7°. So by Lemma (2.3), Hn is collectionwise

multiplicative.

This example shows that a collectionwise multiplicative set need not

contain even a single nonzero multiplicative linear functional.

(2.11) Example. Let £ be the algebra m of bounded complex (or real)

sequences with pointwise addition and multiplication and let £' be the space

lx of absolutely summable sequences. Then the Mackey topology t(£, £')

is the same as the strict topology ß on £ considered as the space Cb(S) of

bounded continuous complex (or real) functions on the space S of positive

integers with the discrete topology ([2], [3], and [4]).Let k be the compact

open topology on E. By Corollary (3.3) in [4], there is no locally /«-convex

topology on £ between ß and k. The dual of (£, k) is the space of sequences

with only a finite number of nonzero elements and therefore k<w(E, £')■

(i) £ is not locally m-convex under any topology compatible with

(£, £')• So there exists no family of absolutely convex, w(llt m)-compact

(and therefore, |[ • Hj-compact), collectionwise multiplicative sets that

cover /,.

(ii) (£, ß) has the Mackey topology and is A-comex [4]. So every

absolutely convex, w(/1; iw)-compact subset of /, is contained in an abso-

lutely convex, w(llt m)-compact, collectionwise multiplicative-translation

invariant set.

3. £ with the weak topology w(E, £')• In this section £ will denote

the space £ with the weak topology vv(£, £'). For £<= £ let EB denote

the linear hull of B.

(3.1) Lemma. Suppose that E has hypocontinuous multiplication.

Let g be in E' and B be an absolutely convex bounded subset of E. Then

the kernel K(g) of g contains a closed subspace J of finite codimension in E

such that K(g) contains JEB and EBJ.

Proof. Let V be the polar of {g} in £. Since the multiplication in £

is hypocontinuous there exists a finite set £={/i:l^/^n} such that

V^(BF°)KJ(F°B). LetJ={xeE:fi(x)=0, l^i^n}. Then /£<= F°B^ V
and also/is a closed subspace of finite codimension in £. Also JEB=JB^

V={g}° and as JEB is a linear space JEB^K(g). Similarly EBJ^K(g).

(3.2) Theorem. // £ is the closed linear hull of a bounded subset of

itself and E has hypocontinuous multiplication then E has jointly continuous

multiplication.
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Proof. Let B be an absolutely convex bounded subset of £ such that

E=EB~, where '—' denotes the closure in £. Let g be in £'. Let J be as in

the proof of the above lemma. ThenJE=JEJS~ <=■ (JEB)~<^ (K(g))~=K(g).

Similarly, EJ^K(g). Theorem 2 of Warner [8] now gives that £ has

jointly continuous multiplication.

(3.3) Corollary. If E is the closed linear hull of a bounded set then

E is locally m-convex if and only if E is A-convex if and only if it has jointly

continuous multiplication if and only if it has hypocontinuous multiplication.

Proof. Combine Theorem (3.4) in [3], Theorem 1 in [9] and Theorem

(3.2) above.

(3.4) Remark. If a locally convex Hausdorff space is the closed

linear hull of a bounded set i.e. it is boundedly generated (in short, BG)

in the terminology of [6] then it is BG under each topology compatible

with duality (Remark 10 in [1]). Every normed linear space is BG and a

product of BG spaces is again BG [6] (see also Remark 10 in [1] and [2]).

Thus our results are applicable to a large class of algebras.

(3.5) Example. The algebra (m, w(m, /x)) is BG but not locally

/«-convex ([2], and Example (2.11) (i) above). So it is not /4-convex and

does not have hypocontinuous multiplication.

(3.6) Example. Let £ be the algebra of all complex (or real) continu-

ous functions on the interval [0, 1] with pointwise addition and multi-

plication equipped with the weak topology resulting from the sup norm

topology. Then £ is a BG space. Warner [8] has shown that £ does not

have jointly continuous multiplication. Therefore, £ is not /4-convex

and £ does not have hypocontinuous multiplication. Thus the claim made

in the second part of Examples 3.12 in [5] is not valid.

(3.7) Example. Consider the algebra <p of complex (or real) sequences

with only a finite number of nonzero elements. Then its algebraic dual is

the space to of all complex (or real) sequences under the duality given

by /W=2"=i fn£n for *=(£*) e 95 and /=(£„) ecu. So the Mackey

topology r(ip, co) is the finest locally convex topology on <p and therefore

is the same as the direct sum topology. Also bounded sets are finite-

dimensional and every absolutely convex absorbent set is a neighborhood

of o in <p. Moreover, co is the a-dual of <p and r(cp, to) is the same as the

normal topology, a base of neighbourhoods of o which is given by

[i/, = |x = (fJe*:j? I6.CI Ú I'},/- (£»)eco)      [7, §30.1].

Let  Vf={xe<p:^=1\ßnU<\, I^^nVnUúI^ilVnU for a\l y=
(r¡„)ecp}. Then  VfVfcVf<=-Uf and also   Vf is  an  absolutely  convex
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absorbent set and thus a neighbourhood of o in r(<p, co). So r(<p, co) is

locally m-convex.

Now let £ denote the space 9? with the weak topology w(cp, co). Then E

has hypocontinuous multiplication but does not have jointly continuous

multiplication.

If B is bounded on £ then there exists an integer N and an a^O such that

5c {*=(!„): fn=0 for n>W and |£.|;g« for n£N}. Let/-(£„) 6£'-«

and let U be its polar in £. For n^N, let gn e £' be given by gB(x)=

Mx|£B||B, *=(£„) e £. Then the polar V of {g„: 1 ̂ n-£N} is a neighbour-

hood of o in £ Also FS<= £/. Thus £ has hypocontinuous multiplication.

Now consider /= (£n) 6 £' given by £„=1 for all n. If £ is locally

/n-convex then by Theorem 1 of [8], the kernel K(f) of/contains an ideal J

of finite codimension. Let x (¿¿0) eJ. Let y=(r¡n) e £ be given by r¡n=Sn

(n=l,2,---). Then xyeJ. Now f(xy)=2U l!»IV0. So xy $ K(f),
which gives a contradiction. So £ is not locally /«-convex and is, therefore,

not A-con\ex and does not have jointly continuous multiplication.

I should like to thank the referee for useful comments and suggestions.
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