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CATEGORIES OF //-SPACES

PIERRE J.  MALRAISON, JR.1

Abstract. Fuchs' [1] category of iï-spaces and homotopy

classes of shm-maps is shown equivalent to a simpler category of

fractions.

Introduction. When algebra and topology are combined, one often

encounters difficulties not otherwise present. For example a continuous

homomorphism between two topological monoids, /: G—>•//, may be a

homotopy equivalence of their underlying topological spaces, but the

homotopy inverse need not be a homomorphism. One solution to this

problem is given by Fuchs in [1] by enlarging the class of allowable

maps between monoids, and then passing to homotopy classes. This note

shows that Fuchs' procedure is equivalent to the more immediate cate-

gorical process of passing to an appropriate category of fractions.

For later results in his paper, Fuchs assumes that all spaces have the

homotopy type of CW-complexes. For the purposes of this note it suffices

to have compactly generated spaces, so that the exponential law works.

Let M/>n be the category of topological monoids and continuous

homomorphisms, and &P Fuchs' category of topological monoids and

homotopy classes of //-homomorphisms. Then one has the following

result.

Theorem. Wo(M#n)=¿tf, where Ho(J(#n) is the category of fractions

of Mon with respect to the class of maps which are homotopy equivalences

of the underlying topological spaces, i.e. the category obtained by adding

formal inverses for all such maps.

I would like to thank Jon Beck for encouragement and helpful dis-

cussion, as well as all the people who offered comments on the preprint

edition of this note.

1. The universal monoid.

Definition 1.   Let G be a topological monoid.

UG = U Gn x /n_1/equivalence relation
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where the equivalence relation is generated by equations of the form

(a) (gi, g2, • • ' » gn, h> h, • ' ' . 'n-l) = (gl, ' ' * » gigi-U '",gn>tu'">

ti, --'^n-Ù tf /l-l.

(b) (e, gi, • • •, g„_!, ?i, *»,*••, i„_i)=(gi, fg, • • •, g„-i, f«, • • •, f»-i)
and (gx, • • • , ^„_j, t?, ?!,-•• , /„_i)=(gi, • • • , g„_i, /i, • • • , /B_g) where e

is the identity of G.

The coproduct and equivalence relations are taken in the category of

topological spaces. lis the unit interval [0, 1]. A multiplication is defined

on UG by

[(gi, ••• ,g»,h>-" . *n-iWh, ■ ■ ■ , hn, slt ■ ■ ■ , J„_j]

= \gi> * * " » £»» h, • • •, /in, ii, • • • , /n_i, 0, jj, • • ■ , j„_!].

It is easy to check that [e] is an identity for this (clearly) associative

multiplication. Iff:G->G' is a homomorphism, define Uf to be

t//=I_I/n x /"-Ve.r.

which is well defined since fis a homomorphism, and clearly multiplic-

ative. So U:J{eji-*jft/>ji is a functor.

Remark. ¡7 has additional structure which makes it a highly homotopy

coassociative cotriple [2]. In a later paper [3] all of this higher structure

will be examined, but for purposes of the present note, it suffices to have

simply the homotopy cotriple structure used below.

It is immediate that a homomorphism from UG to G' is the same thing

as what Fuchs calls a regular //-homomorphism [1, §6]. Two homomor-

phisms/,/': UG-+G' and a homotopy H:UGxI-*G' such that //( , t)

is a homomorphism for all / constitute a homotopy between //-homomor-

phisms [1, §3].

Composition of //-homomorphisms can be described by the methods

of Kleisli [4] using the following natural transformation: Define è:U-*-U2

by

à([gl, ■ ■ •  , gn, h, ■ ■ ■  , /„_!])  =   [[>,-,], • • •  , [#tM], 2th, • • •  , 2th]

where 0^f<.^1,7=1, • • • , k, and

{gi} = [gi,_l+i, • • • ,gi,, 2'<,_1+i - 1, • • • , 2í¿._! - 1] e Í/C.

The /, are all those elements of / between 0 and £ inclusive. I.e., tt is

the first tj with 0^/,-^£ and ?!=/ The other elements of / are counted

around the /,, e.g., ti¡+k, and lie in [£, 1].

Since Ô has no effect on the G component, except possibly to multiply

some elements together, <5 is natural with respect to homomorphisms.

It is well defined at points where some t(=^ by virtue of relation (a) of

Definition 1, and the definition of multiplication in UG.
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Example. ô([gu g2, g3, gi, 0.3, 0.4, 0.6])= [foj, [g2], \g9, gl, 0.2], 0.6,
0.8].

Composition of two //-homomorphisms /: UG->-G', k:UG'-+G" can

now be defined by

(1) UG —y U*G —+ UG' —► G".

This is the same as the composition [1, 2.2(c)]. It follows from [1, 3.4]

that the category with objects topological monoids and maps from G

to G' homotopy classes of homomorphisms from UG to G' and com-

position given by (1) is 2fC. (Note. The homotopy classes of homomor-

phisms must be with respect to homotopy through homomorphisms.

See remark following Definition 1.)

The final piece of structure which will be needed is another natural

transformation p : U-*Mon defined by

Po([gl, ■ ■ ■ , gn, h, ■ • ■ , tn-l\) = glgl - - ' gn-

Note that pG is a homotopy equivalence of the underlying topological

spaces: By shrinking the i's any point in UG is homotopy equivalent to

g! ■ ■ ■ gn. Moreover, [pG] is the identity of &C.

2. The equivalence. In this section Mo(Mon) will mean the category

of fractions of Mon with respect to the class of maps which as maps of

topological spaces are homotopy equivalences. It can be obtained from

Mon by adding one copy of every such map, taking the free category

and then factoring out the relations already given by the category structure

in Mon and the relations making each copy of a map in the class an

inverse for its original. A general map from Xx to Z4 can be written (not

uniquely) as a sequence :

where the /, are homomorphisms and the gt are homotopy equivalences

and homomorphisms.

There is a functor Ho(Mon)J-Mon which is the identity on objects

and takes a map/into its class in the fraction category (the analogue of

the map Z-»-<2 which sends w->-h/1). Any functor which sends homotopy

equivalences into isomorphism factors through y. (The fraction category

could also be defined in terms of this universal property. For generalities

on fraction categories see [5], [6].)
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Define I:Mon-+2te as follows: IG=G, I(f)=[pG-f]:UG-+H, for

/:G—//.
It must be shown that / is a functor. /(idG)= [pG] which is the identity

in JT. Let f.G^H, g:H-+L. Then

I(f-g)=[pG-f-g]
= {Vf-pa-g]   by naturality of p, pG •/ = Uf-pu

= [<V UpG- uf-pH-g]
since ÔG ■ UpG is homotopic to the identity

- [à0 ■ U(pG •/) • (pH ■ g)] = 1(f) ■ 1(g).

It follows from [1, Satz in §4] that if/is a homotopy equivalence, /(/)

is an isomorphism in 3^. So / factors through y, and the corresponding

functor from 3^o(Mon) to 3tf, will be denoted f.

Now consider the functor J:3^f—>-Ko(Me>n) defined by JG=G. For

/: UG^H in [/] in JT, /([/])=y(pG)~1 • y(f). J is well defined if fag
through homomorphisms implies y(f)=y(g). But/~g means there is an

M where (a) M:UGxI-*H such that if ic:UG-+UGx.I:x^(x, e),

£=0, 1, (ß) z'0M=/and i1M=g. Let t/G®/be the free topological monoid

on UGxI modulo the relations (x, t)(x', t) = (xx', t). Then since M is

a homotopy through homomorphisms, it determines a map M' : UG®I—*H

such that (a) and (/?) hold with Af replaced by M' and Í/G®/ replacing

UG X /. i0 and ix are homomorphisms by virtue of the relations. Finally

r: UG&I-+UG given by r([x, t])=x is a homomorphism, and a homotopy

inverse for both z0 and i1# So y(r) • y(ic)=idUG for e=0, 1. Consequently

y(r) ' y(/)=7('-) " y(g)> by ß, and, since y(r) is an isomorphism, y(f)=

7(g)-
So / is well defined. It must be shown that J([f][g])=J([f])J([g]).

f:UG^Hg:UH-*L

J([f][g])=mào-Vf-g])
= y(Pg)'1 • y(àG) ■ y(Uf) ■ y(g)   by definition

= r(po)-1 ■ yQq) ■ r(UpG) ■ y(f) • yíphT1 -yig)
by naturality, see Figure 1

= y(pg)-1 ■ y(f) ■ y(ph)-1 ■ 7(g)

since p is a homotopy counit for ô

= J(lf])J([g})-
i„ Uf a

UG -1+U2G —>UH—y L

Up,i    "1
UG —► H

Figure 1
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Since the identity for &P is [pG], it is immediate that J(G)=ida. So

it remains to show/ and «/are inverses. There is no problem with objects, so

it suffices to look at maps. Since & is a functor, it is also sufficient to look

at/^(y(/))for/amapin^,^.But^(y(/))=//(/)=/([^0-/])=y(/»G)-1-

V(poYY(f)=Y(f)- SW])=S(y(pG)-i •y(/))=/(/'G)-1 •/(/)• Recall that
in 34?, f is given by a map Í/G-»//, so the composition is well defined.

IÍPg)'1 ■ I(f)=if] by the definition of I(pa)-1: apply [ ] to Figure 2,
and recall [pG] is the identity. Square A commutes by definition of/(/>G)_1.

v U2G —► UG —► H
UUiva)-1) »re
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