UNIQUE FACTORIZATION IN GRADED POWER SERIES RINGS

PETER S. LANDWEBER¹

ABSTRACT. It is shown that the graded ring $R[x_1, x_2, \cdots][[t]]$ of homogeneous power series is a graded UFD if R is a regular UFD, the degrees of the x_i are positive and tend to ∞ , and t has degree -1. In particular this applies to $MU^*(CP^{\infty})$ and $BP^*(CP^{\infty})$.

1. **Introduction.** It is well known that if R is a unique factorization domain (UFD) then so is any polynomial ring over R; on the other hand, P. Samuel [5] has shown that the power series ring R[[t]] need not be a UFD. In the positive direction, if R is a regular UFD then so is R[[t]]; in particular if R is a principal ideal domain then $R[[x_1, \dots, x_n]]$ is a UFD (see e.g. [1], [4] or [5]). At present it is apparently not known if $R[x_1, x_2, \dots][[t]]$ is a UFD, even when R is a field.

In this note we study unique factorization of homogeneous power series over graded rings. If $S = (S_n)_{n \in \mathbb{Z}}$ is a graded ring, we call $s \in S_n$ a homogeneous element of S of degree n, and write |s| = n. For a commutative graded ring S, let S[[t]] denote the graded ring of homogeneous power series over S, where |t| = -1; thus $S[[t]]_n$ consists of power series $f = \sum_{i=0}^{\infty} f_i t^i$ with $|f_i| = n + i$. Our main result, Theorem 3.1, is that S[[t]] is a graded UFD in case $S = R[x_1, x_2, \cdots]$ is a graded polynomial ring over a regular UFD R, where the degrees $|x_i|$ are positive and converge to ∞ . We note that with this choice of gradings $R[x_1, x_2, \cdots][[t]]$ is is isomorphic to the inverse limit of the graded rings $R[x_1, \cdots, x_n][[t]]$; in §2 we show that $R[x_1, \cdots, x_n][[t]]$ is a graded UFD (Corollary 2.3), and then pass to the limit in §3.

In particular, it follows that $MU^*(CP^{\infty})$ and $BP^*(CP^{\infty})$ are graded UFD's, where $MU^*()$ denotes complex cobordism and $BP^*()$ is Brown-Peterson cohomology. (I apologize for using homology rather than cohomology indexing.) For MU this result has been stated without proof and used by T. tom Dieck (see [2, p. 365] or [3, p. 34]); since the proof is deeper than one may first expect, it seems worthwhile to publish it.

Received by the editors January 31, 1973.

AMS (MOS) subject classifications (1970). Primary 13F15; Secondary 13J05, 55B20. Key words and phrases. Unique factorization domain, graded ring, homogeneous power series.

¹ Research supported in part by an NSF Grant 21064.

- 2. A reduction of the problem. Let S be a graded integral domain, and S[[t]], |t| = -1, the graded ring of homogeneous power series over S.
- (2.1) PROPOSITION. S[[t]] is a graded UFD if and only if the ring $S[[t]][t^{-1}]_0$ is a UFD.

Notice that $S[[t]][t^{-1}]_0$ is the ring of Laurent series $f = \sum_{i=n}^{\infty} f_i t^i$ with $f_i \in S_i$ and n any integer. In particular, if the grading on S is nonnegative then this coincides with $S[[t]]_0$, the ring of power series $f = \sum_{i=0}^{\infty} f_i t^i$ over S with $|f_i| = i$.

PROOF. Suppose that S[[t]] is a UFD. Hence there is a set $\{p_{\alpha}\}$ of prime elements in S[[t]] so that each nonzero $f \in S[[t]]$ has the form

$$(2.2) f = ut^{n_0}p_{\alpha_1}^{n_1}\cdots p_{\alpha_r}^{n_r}$$

where u is a unit and the exponents n_0, \dots, n_r are uniquely determined. It is immediate that $S[[t]][t^{-1}]$ and $S[[t]][t^{-1}]_0$ are UFD's, with a complete set of prime elements given by $\{p'_\alpha\}$ where $p'_\alpha = p_\alpha t^{|p_\alpha|}$ has degree 0.

Conversely, assume $S[[t]][t^{-1}]_0$ is a UFD with $\{p'_{\alpha}\}$ a complete set of prime elements. Choose d_{α} so that $p_{\alpha} = t^{-d_{\alpha}}p'_{\alpha}$ belongs to S[[t]] and has nonzero constant term (note that $d_{\alpha} = |p_{\alpha}|$). One checks easily that the p_{α} are prime elements in S[[t]], and that each of its nonzero homogeneous elements in a product of the form (2.2). Thus S[[t]] is a graded UFD.

(2.3) COROLLARY. If $S = R[x_1, \dots, x_n]$ is a graded polynomial ring, where $|x_i| > 0$ and R is a regular UFD, then S[[t]] is a graded UFD.

PROOF. Since S is nonnegatively graded, $S[[t]][t^{-1}]$ coincides with $S[[t]]_0$. In turn we may identify $S[[t]]_0$ with $R[[y_1, \dots, y_n]]$, where $y_i = x_i t^{|x_i|}$, which is known to be a UFD (see e.g. [4, Theorem 188]).

- 3. The main theorem. In this section we fix a regular UFD R and let S denote the graded polynomial ring $R[x_1, x_2, \cdots]$ where $|x_i| > 0$ and $|x_i| \to \infty$.
- (3.1) THEOREM. $R[x_1, x_2, \cdots][[t]]$ is a graded UFD provided that $|x_i| > 0$, $|x_i| \to \infty$ and |t| = -1.

PROOF. For convenience we let S_n denote the graded polynomial ring $R[x_1, \dots, x_n]$. We define homomorphisms of R-algebras $\phi_n: S \rightarrow S_n$ and $\phi_n^N: S_N \rightarrow S_n$ for $N \ge n$ by $x_i \mapsto x_i$ if $i \le n$ and $x_i \mapsto 0$ if i > n.

These induce homomorphisms

$$\phi_n: S[[t]] \to S_n[[t]], \qquad \phi_n^N: S_N[[t]] \to S_n[[t]], \qquad N \ge n$$

by acting on the coefficients of the power series. In view of our assumption that $|x_i| > 0$ and $|x_i| \to \infty$, it is immediate that the ϕ_n define an isomorphism

$$S[[t]] \cong \lim_{\stackrel{\longleftarrow}{n}} S_n[[t]]$$

of graded rings. We know each $S_n[[t]]$ is a graded UFD, and shall show how to pass to the limit.

To show that S[[t]] is a graded UFD, it suffices to verify the following statements:

- (3.2) Each nonzero element is a product of irreducible elements.
- (3.3) Each irreducible element is prime.

We recall that f is irreducible if $f=gh\Rightarrow g$ or h is a unit; and f is prime if $f|gh\Rightarrow f|g$ or f|h. A prime element is always irreducible; the converse holds in a UFD.

It suffices to establish (3.2) and (3.3) for homogeneous power series $f = \sum_{i=0}^{\infty} f_i t^i$ with $f_0 \neq 0$, since t is evidently a prime element.

As to (3.2), notice that, if f=gh where $f=\sum t_i t^i$ ($f_0 \neq 0$), $g=\sum g_i t^i$ and $h=\sum h_i t^i$, then $f_0=g_0 h_0$. Since $R[x_1, x_2, \cdots]$ is a UFD, we can easily express f as a product of irreducible elements.

Prior to showing that irreducible elements are prime in S[[t]], we verify the statement:

(3.4) If $f \in S[[t]]$ is irreducible, then for large n also $\phi_n(f) \in S_n[[t]]$ is irreducible.

So let $f = \sum f_i t^i$ $(f_0 \neq 0)$ be irreducible and write $f_0 = p_1 \cdots p_s$ where the p_i are irreducible in $R[x_1, x_2, \cdots]$. Choose N so that $n > N \Rightarrow |x_n| > |f_0|$; then for $n \ge N$ also $\phi_n(f)$ has constant coefficient f_0 . Thus $\phi_n(f)$ is a product of r_n irreducible elements with $r_n \le s$; evidently we have $r_n \le r_{n+1} \le s$, so if we increase N sufficiently then $n \ge N \Rightarrow r_n = n$ is independent of n. Hence we may assume that for $n \ge N$ we have

(3.5)
$$\phi_n(f) = p_1^{(n)} \cdots p_n^{(n)}$$

where the $p_i^{(n)}$ are irreducible elements of $S_n[[t]]$.

We next show that it is possible to arrange that

(3.6)
$$\phi_n^{n+1}(p_i^{(n+1)}) = p_i^{(n)}, \quad n \ge N.$$

To see this, begin with $\phi_N(f) = p_1^{(N)} \cdots p_r^{(N)}$ and continue by induction on n. Thus if we have achieved $\phi_n(f) = p_1^{(n)} \cdots p_r^{(n)}$ we first choose the $p_i^{(n+1)}$ provisionally so that

$$\phi_{n+1}(f) = p_1^{(n+1)} \cdots p_r^{(n+1)}.$$

Applying ϕ_n^{n+1} , we may permute the $p_i^{(n+1)}$ and obtain $\phi_n^{n+1}(p_i^{(n+1)}) = u_i p_i^{(n)}$ with u_i a unit. If we replace $p_i^{(n+1)}$ by $p_i^{(n+1)}u_i^{-1}$ for i < r, then we have

$$\phi_n^{n+1}(p_i^{(n+1)}) = p_i^{(n)}$$
 for $i < r$;

from $\phi_n(f) = \phi_n^{n+1}(\phi_{n+1}(f))$ we see that also $\phi_n^{n+1}(p_r^{(n+1)}) = p_r^{(n)}$. This establishes (3.6).

Thus for $i=1, \dots, r$ the elements $\{p_i^{(n)}\}_{n\geq N}$ determine an element of the inverse limit of the $S_n[[t]]$, hence we obtain p_1, \dots, p_r in S[[t]] so that $\phi_n(p_i)=p_i^{(n)}$ for $n\geq N$. This gives $\phi_n(f)=\phi_n(p_1\cdots p_r)$ for $n\geq N$, so $f=p_1\cdots p_r$. No p_i is a unit and f is irreducible, hence r=1 and we have verified (3.4).

We are ready for (3.3). Let f be irreducible in S[[t]] and assume f|gh. For large n we know $\phi_n(f)$ is prime, hence $\phi_n(f)$ divides $\phi_n(g)$ or $\phi_n(h)$. Thus we may suppose that $\phi_n(f)$ divides $\phi_n(g)$ for all n. We see immediately that f divides g, as desired. So f is a prime element. Q.E.D.

- (3.7) REMARK. One easily recognizes as irreducible any power series in $R[x_1, x_2, \cdots][[t]]$ whose constant term is an irreducible element of $R[x_1, x_2, \cdots]$. This covers the power series that arise in [2] and [3]. It is easy to show that such an irreducible element is prime, in both the graded and ungraded case; the point is that the analogue of (3.4) is now automatic.
- (3.8) REMARK. In view of (2.1), we have shown that the power series ring $R[[x_1, x_2, \cdots]]$ over a regular UFD is a UFD if $|x_i| > 0$ and $|x_i| \to \infty$. Its elements have the form $f = \sum_{i=0}^{\infty} f_i$ where $f_i \in R[x_1, x_2, \cdots]_i$ is a polynomial of degree i.
- (3.9) REMARK. One measure of the difficulty in the ungraded case is that we only obtain a monomorphism of $R[x_1, x_2, \cdots][[t]]$ into the inverse limit of the $R[x_1, \cdots, x_n][[t]]$, hence we cannot prove the analogue of 3.4 by our argument.

REFERENCES

- 1. D. A. Buchsbaum, Some remarks on factorization in power series rings, J. Math. Mech. 10 (1961), 749-753. MR 23 #A1666.
- 2. T. tom Dieck, Actions of finite abelian p-groups without stationary points, Topology 9 (1970), 359-366. MR 44 #2253.
- 3. ——, Kobordismentheorie klassifizierender Räume und Transformations gruppen, Math. Z. 126 (1972), 31-39.
- 4. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234.
- 5. P. Samuel, Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Math., no. 30, Tata Institute of Fundamental Research, Bombay, 1964. MR 35 #5428.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903