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CONJUGACY CLASSES
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Abstract. In a more general form, the following structure

theorem is proved. Let G be a locally compact group with small

invariant neighborhoods. Then G has relatively compact conjugacy

classes if and only if G is a direct product of a vector group Kand a

group L where L has a compact open normal subgroup K such

that LjK has finite conjugacy classes.

The purpose of this note is to prove the following theorem which is a

direct generalization of the basic structure theorem for locally compact

abelian groups [2, Theorem 24.30].

Theorem. Let 38 be a subgroup of 91(G) containing the inner auto-

morphisms. Let G e [SIN]¡g. Then G e [FC]^ if and only if G contains
38-invariant subgroups V, L and K such that V is a vector group, K is

compact and open in L, LjK e [FC]#, and G=VL is a direct product of V

and L.

First we establish a few definitions and some notation. All groups

considered are Hausdorff and locally compact. The group operation is

multiplication. A vector group is one which is topologically isomorphic

to the additive structure of Rn with w_:0. The connected component of

the identity of a topological group G is denoted Ge. An element of G is

said to be compact if the subgroup it generates has compact closure. The

group of topological automorphisms of G is 91(G). If 38 is a subgroup of

91(G) which contains the inner automorphisms, then the á?-orbit of x e G

is {ß(x):ß e 38). A subset S of G is said to be ^-invariant, if ß(s) e S for

all j e S and ß e 38. We are interested in the following classes of groups.

G e [FC]& if the ^-orbits of points have compact closures.

G 6 [SIN]& if there is a neighborhood basis of compact ^-invariant

neighborhoods at the identity.

G e [FD]& if the ^-commutator subgroup, which is the closure of the

group generated by {x~1ß(x):ß e 38, x e G}, is compact.
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If 03 actually equals the inner automorphism group, then the subscript

and prefix 33 is omitted. If H is a ^-invariant subgroup of G, then the

restriction of 33 to H is a subgroup of 9I(//) which, by abuse of notation,

is again denoted 33. Similar remarks apply to quotients formed by 33-

invariant subgroups.

The proof of the theorem relies on the following results of Grosser and

Moskowitz and on the lemma below. Let J1 be a subgroup of 31(G)

containing the inner automorphisms; let Ge [FC]& and let P be the

periodic subgroup of G, that is, P is the set of compact elements of G.

(1) P is a closed ^-invariant subgroup of G and the sequence

l^>-P->-G->-Wx D-+1 is exact. Here W is a vector group and D is a

discrete torsion-free abelian group [3, Theorem 3.16].

(2) If G is compactly generated, then P is compact [3, Theorem 3.20].

(3) If G e [FD]-, then normal vector subgroups split [3, Corollary 4.3].

Lemma. Let 3$ be a subgroup of %(G) containing the inner automorphisms

and let G e [FC]#. If the connected component of the identity Ge= VK is a

direct product of a non trivial 33-invariant vector subgroup V and a compact

group K, then there is a 33-invariant subgroup L such that G= VL is a

direct product of V and L with Le compact.

Proof. Let P be the set of compact elements of G. We claim the map

f. VP\P-+V\(VC\P)= Kdefined by f(vP)=v is a topological isomorphism.

Since Kis c-compact and P is closed, this follows from [2, Theorem 5.33]

providing we show that VP is open, hence closed in G. Let H be any

compactly generated open subgroup of G. Then H e [FC]~ and so by (2)

H e [FD]~. Furthermore, F is a normal vector subgroup of H so that, by

(3), H=VM is a direct product of V with a subgroup M. Since H—

VM^>Ge= FA"and Vcontains no compact elements, M^K. Furthermore,

MjK^HIGe is totally disconnected. Thus M contains a compact open sub-

group Mx. Since VMX<^ VP and VM1 is an open subset of G, VP is open

in G.

By (1) G\P=WD is a direct product of a vector subgroup W with a

discrete subgroup D. Let 77! : G->-G/P and 7r2 : WD-* W be the canonical

projections. Next note that n'[1(TT1(Ge))=GeP= VKP= VP is open implies

that 771(C7e) is open and hence closed and so ■tr1(Ge)=VP/P=(GlP)e=W

[2, Theorem 7.12]. That is, W= VPjP. Now consider the composition

G -U- G IP = (VPjP)D —> VPjP -Ï-». V.

If v e V, then f(ir2(7r1(v)))=y)(7r2(vP))=f(vP)=v. Thus 77=y> ° 772 o 7r1

is a projection onto the normal subgroup Kand G= VL is a direct product

with Z.=ker77.
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We now show that L is ^-invariant. Let x e L and let 0(x) be the closure

of the ^-orbit of x which is compact and ^-invariant. Let Gx be the sub-

group of G generated by 0(x). Then Gx is ^-invariant and so is a com-

pactly generated [/"C]^-group. By (2) Gx e [FD]#. This means that the

^-commutator subgroup of Gx is compact so that its image in V under v

is a compact, hence trivial, subgroup of V. It follows that x~lß(x) e

ker77=L and ß(x)exL=L, for each ß e 38. Since x was an arbitrary

element of L, L is ^"-invariant. Since Le=(G/V)e=GjV=K, Le is compact

[2, 7.13].
Proof of the Theorem.   Assume G 6 [FC]^ n [S/A]^. Then

Ge g [FCfi n [S/AO,

so that the closure of 3$ as a subgroup of 9I(Ge) is compact [3, Theorem

0.1]. Since Ge is a connected [S/A]-group, it is maximally almost periodic

and is a direct product Ge=V1K1 of a vector group Vx and a compact

group Kx [1, Théorème 16.4.6]. Since Kx is a characteristic subgroup of G,

there is an automorphism a of Ge such that V=%(VX) is a .^-invariant

subgroup of G and Ge=VKx [3, Theorem 1.1]. The lemma now applies

and we have G= VL with the desired properties. All that remains is to

exhibit the required compact open subgroup K of L. The totally discon-

nected group L/Le is in [SIN]j so that any compact open subgroup K2

in LjLe contains a ^-invariant neighborhood of the identity. Thus

H {ßK2:ß e 38} is a compact open á?-invariant subgroup of L\Le. Let K

be its inverse image in L.

Conversely, assume G= VL as in the statement of the theorem. It

suffices to show that L e [FC]&. Let {xxK:x e A} be a coset decomposition

of the discrete group L/K. Let x e L so that x=xjc for some a. The

á?-orbit O of xa/^ is finite. Thus, if n is the projection of L on L\K, we

have ir(ß(xt)) e O. Consequently, ß(x)=ß(xa)ß(k)en-1(0)K. That is,

the ^-orbit of x is contained in a compact subset of L.

Remarks. The theorem stated above is a generalization of a structure

theorem of Grosser and Moskowitz [3, Theorem 4.6]. In their case the

group G was in [FD]# and they were able to choose the compact subgroup

K so that LjK was 3$-ñxed. That this is not generally possible for G e

[FC]ä is illustrated by considering a group G which is a discretely topolo-

gized weak direct sum of an infinite number of copies of a finite simple

group [3, p. 39]. This group has finite conjugacy classes and the existence

of such a (finite) subgroup K would imply that G had a finite commutator

subgroup, which it does not.

Compactly generated locally compact abelian groups split as a direct

product RnxZmxK, with K compact [2, Theorem 9.8]. This theorem

does not generalize to any reasonable class of nonabelian groups. However,
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if we assume that G is a compactly generated group in [SIN]#, the

theorem remains valid with "L¡K^Zm for some m^O and LjK is 33-

fixed" replacing "LjK e [FC]g". This can be obtained as a corollary of

our theorem by utilizing the method of proof of [3, Proposition 4.5] as

outlined below. Without loss of generality, we can now assume that K

contains the ^-commutator subgroup of L so that LjK is a finitely

generated abelian group and then enlarge K so that LjK is torsion-free

and K is compact.

Our theorem has found applications in harmonic analysis. See [4].
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of the research leading to this paper by the Technische Universität
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