A SIMPLE ALTERNATIVE PROBLEM FOR FINDING PERIODIC SOLUTIONS OF SECOND ORDER ORDINARY DIFFERENTIAL SYSTEMS¹

J. W. BEBERNES

ABSTRACT. Existence of solutions for x'' = f(t, x, x'), x(0) = x(1), x'(0) = x'(1) are proven by considering a simple alternative problem to which Leray-Schauder degree arguments can be directly applied.

1. Introduction. In this paper, we consider the existence of solutions to the periodic boundary value problem (PBVP)

$$(1) x'' = f(t, x, x'),$$

(2)
$$x(0) = x(1), \quad x'(0) = x'(1).$$

Knobloch [4], Mawhin [5], Schmitt [6], and Bebernes and Schmitt [1] have recently considered this problem using degree-theoretic arguments—either finite or infinite dimensional.

Using only the basic properties of Leray-Schauder degree and applying these degree arguments to a simple alternative problem associated with (1)-(2), we obtain in this paper a single basic result (Theorem 2.1) which contains and in some cases permits slight generalizations of most of the results of the above mentioned papers.

2. The basic theorem. Let I=[0, 1], \mathbb{R}^n be *n*-dimensional Euclidean space with Euclidean norm $\|\cdot\|$ and inner product $\langle\cdot,\cdot\rangle$, and let $D \subset I \times \mathbb{R}^n \times \mathbb{R}^n$ be a bounded open set in the relative topology of $I \times \mathbb{R}^n \times \mathbb{R}^n$ containing $\{(t, 0, 0): t \in I\}$. Let $F: I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and consider

$$(3) x'' = F(t, x, x').$$

For each $\lambda \in [0, 1]$, associate with (3) the equation

(4)
$$x'' = \lambda F(t, x, x') + (1 - \lambda)x.$$

Received by the editors April 6, 1973.

AMS (MOS) subject classifications (1970). Primary 34B15, 34C25; Secondary 47H15. Key words and phrases. Periodic boundary value problems, alternative problems, Leray-Schauder degree, Nagumo-Hartman condition, Lyapunov-like functions.

¹ This research was supported by the U.S. Air Force under Grant AFOSR-72-2379.

and assume:

(H) If x(t) is a solution of (4)-(2), then $(t, x(t), x'(t)) \in D$ for all $t \in I$ or there exists $\tau \in I$ such that $(\tau, x(\tau), x'(\tau)) \notin \overline{D}$.

THEOREM. 2.1. The periodic boundary value problem (3)-(2) has at least one solution such that $(t, x(t), x'(t)) \in D$ for all $t \in I$.

PROOF. The periodic boundary value problem

(5)
$$x'' - x = 0$$
, $x(0) = x(1)$, $x'(0) = x'(1)$

has no nontrivial solutions. Let H(t, x, x') = F(t, x, x') - x, then x(t) is a solution of (4)-(2) if and only if x(t) is a solution of

(6)
$$x(t) = \lambda \int_0^1 G(t, s) H(s, x(s), x'(s)) ds$$

where G(t, s) is the unique Green's function for (5).

Let $B = \{x \in C'[0, 1]: x(0) = x(1), x'(0) = x'(1)\}$ with norm

$$|x| = \max_{I} ||x(t)|| + \max_{I} ||x'(t)||$$

be the Banach space under consideration, and define

$$\Omega = \{ y \in B : (t, y(t), y'(t)) \in D \text{ for all } t \in I \}.$$

Note that Ω is a bounded open subset of B.

Define the map $T: \overline{\Omega} \rightarrow B$ where $\overline{\Omega}$ is the closure of Ω by

(7)
$$(Ty)(t) = \int_0^1 G(t,s)H(s,y(s),y'(s)) ds.$$

By standard arguments, $T(\bar{\Omega}) \subset B$, T is continuous, and $\operatorname{cl}(T(\bar{\Omega}))$ is compact in B.

If $0 \notin (I-\lambda T)(\partial\Omega)$ where $\partial\Omega$ is the boundary of Ω for all $\lambda \in [0, 1]$, then by the invariance under compact homotopy property of the Leray-Schauder degree [7, p. 92], the degree $\deg(I-\lambda T, \Omega, 0)=$ constant for all $\lambda \in [0, 1]$. That $0 \in (I-\lambda T)(\partial\Omega)$ is equivalent to the existence of a solution x(t) of the PBVP (4)-(2) with $(t, x(t), x'(t)) \in \overline{D}$ for all $t \in I$ and $(t, x(t), x'(t)) \in \partial D$ for some $t \in I$; but by assumption (H) there exists no such solution x(t) of (4)-(2) with $(t, x(t), x'(t)) \in \overline{D}$ for all $t \in I$ and $(t, x(t), x'(t)) \in \partial \overline{D}$ for some $t \in I$. Hence, $\deg(I-T, \Omega, 0) = \deg(I, \Omega, 0) = 1$. By the existence property of the Leray-Schauder degree [7, p. 88], there exists $x \in \Omega$ such that (I-T)x=0. This means that there exists a solution x(t) of the PBVP (3)-(2) with $(t, x(t), x'(t)) \in D$ for all $t \in I$.

3. Applications of the basic theorem. In this section, we illustrate how Theorem 2.1 can be used to prove existence results for PBVP (1)-(2).

The first result is known (e.g., [1], [4], or [5]), but it well illustrates the power of our basic theorem.

THEOREM 3.1. If f(t, x, x') is continuous on $E_R = \{(t, x, x') : t \in I, \|x\| < R, \|x'\| < \infty\}$ and satisfies:

- (8) $||x'||^2 + \langle x, f(t, x, x') \rangle > 0$ for all $(t, x, x') \in E_R$ provided ||x|| = R and $\langle x, x' \rangle = 0$;
- (9) $||f(t, x, x')|| \le \varphi(||x'||)$ for all $(t, x, x') \in E_R$ where φ is a positive continuous function on $[0, \infty)$ with $\int_{\infty}^{\infty} s / \varphi(s) ds = +\infty$;
 - (10) there exists $\alpha \geq 0$, $K \geq 0$ such that

$$||f(t, x, x')|| \le 2\alpha(||x'||^2 + \langle x, f(t, x, x')\rangle) + K$$
 for all $(t, x, x') \in E_R$;
then there exists a solution $x(t)$ of the PBVP (1)-(2) with $(t, x(t), x'(t)) \in E_R$.

PROOF. Let $\delta_M(s)$ be a continuous function on $[0, \infty)$ with $\delta_M(s)=1$ on [0, M] and $\delta_M(s)=0$ for $s \ge 2M$ where $M=M(\alpha, K, R)$ is the Nagumo-Hartman bound (see Hartman [3, p. 429]).

Define

$$F(t, x, x') = \delta_M(\|x'\|) f(t, x, x') \quad \text{on } E_R, \text{ and}$$

$$F(t, x, x') = (R/\|x\|) F(t, Rx/\|x\|, x') \quad \text{if } \|x\| \ge R.$$

Then F(t, x, x') is continuous and bounded on $I \times \mathbb{R}^n \times \mathbb{R}^n$ and satisfies (8) provided $||x|| \ge R$ and $\langle x, x' \rangle = 0$, (9), and (10) for all $(t, x, x') \in I \times \mathbb{R}^n \times \mathbb{R}^n$.

The proof will be completed by showing that there can be constructed an open bounded set $D \subset I \times \mathbb{R}^n \times \mathbb{R}^n$ containing $\{(t, 0, 0): t \in I\}$ such that solutions of PBVP (4)-(2) satisfy hypothesis (H) relative to D.

For each $\lambda \in [0, 1]$, let $F_{\lambda}(t, x, x') = \lambda F(t, x, x') + (1 - \lambda)F(t, x, x')$ where F is defined as above. Then for all $\lambda \in [0, 1]$ and all $(t, x, x') \in I \times \mathbb{R}^n \times \mathbb{R}^n$,

(11)
$$||x'||^2 + \langle x, F_1(t, x, x') \rangle > 0 \quad \text{provided} \quad ||x|| \ge R$$

and $\langle x, x' \rangle = 0$. Let x(t) be any solution of (4)-(2). Define $u(t) = ||x(t)||^2 = \langle x(t), x(t) \rangle$. Because u(t) satisfies the periodic boundary conditions (2), u(t) can assume its maximum at $t_0 \in I$ only if $u(t_0) = 0$, $u'(t_0) \leq 0$. Claim $u(t) < R^2$ for all $t \in I$. Assume not; then there exists $t_0 \in I$ at which u(t) assumes its maximum with $u(t_0) \geq R^2$, $u'(t_0) = 0$, and $u''(t_0) \leq 0$. But (11) implies that $u''(t_0) > 0$ which is a contradiction. Hence, ||x(t)|| < R for all $t \in I$. For $(t, x, x') \in E_R$ and $\lambda \in [0, 1]$, $F_{\lambda}(t, x, x')$ is bounded which implies that $F_{\lambda}(t, x, x')$ satisfies a Nagumo-Hartman condition (conditions (9) and (10) with $\alpha = 0$ and a K' in general different from K and $\varphi(s) = K'$). Hence, there exists an M' > 0 such that if x(t) is any solution of (4) on I with ||x(t)|| < R, then ||x'(t)|| < M'.

Define $D = \{(t, x, x'): t \in I, ||x|| < R, ||x'|| < M'\}$. From the observations made above it is immediate that solutions of (4)-(2) satisfy (H) relative to D. By Theorem 2.1, the PBVP (3)-(2) has a solution x(t) with ||x(t)|| < R. Since F(t, x, x') satisfies (9) and (10), ||x'(t)|| < M on [0, 1] which implies that x(t) is a solution of PBVP (1)-(2) on I with $(t, x(t), x'(t)) \in E_R$.

Equality can be permitted in (8) by an approximating argument like the one given in [3, p. 433].

The preceding theorem can be generalized by replacing $||x||^2$ by a function V(t, x) which plays essentially the same role. In so doing, we obtain results similar to those obtained by Knobloch [4] and Mawhin [5].

Assume $f(t, x, x'): I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and let \mathbb{R}^+ denote the nonnegative reals.

DEFINITION. Let $V \in C^2(I \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^+)$ be such that:

- (a) there exists R>0 such that $\Phi = \{x \in \mathbb{R}^n : V(t, x) < R, t \in I\}$ is bounded,
 - (b) $U(t, x, x') \equiv V_{tt}(t, x) + 2\langle V_{tx}(t, x), x' \rangle + \langle V_{xx}(t, x)x', x' \rangle \ge 0$,
- (c) $V_f''(t, x) = U(t, x, x') + \langle V_x(t, x), f(t, x, x') \rangle > 0$ provided V(t, x) = R and $V_t(t, x) + \langle V_x(t, x), x' \rangle = 0$,
 - (d) $\langle V_x(t, x), x \rangle > 0$ for all (t, x) such that V(t, x) = R,
 - (e) V(0, x) = V(1, x), $V_t(0, x) + \langle V_x(0, x), x' \rangle \ge V_t(1, x) + \langle V_x(1, x), x' \rangle$. Any such V(0, x) = V(1, x) and V(0, x) = V(1, x).

THEOREM 3.2. If V is a bounding Lyapunov function for (1), then for every $\lambda \in [0, 1]$ every solution x(t) of the PBVP:

$$(12) x'' = f_{\lambda}(t, x, x')$$

where $f_{\lambda} = \lambda f + (1 - \lambda)f$ is such that $V(\tau, x(\tau)) > R$ for some $\tau \in I$ or V(t, x(t)) < R for all $t \in I$.

PROOF. Let x(t) be any solution of the PBVP (12)-(2) and let m(t) = V(t, x(t)), then $m'(t) = V_t(t, x(t)) + \langle V_x(t, x(t)), x'(t) \rangle$ and

(13)
$$m''(t) = U(t, x(t), x'(t)) + \langle V_x(t, x(t)), f_{\lambda}(t, x(t), x'(t)) \rangle.$$

By (b), (c), and (d), m''(t)>0 if V(t, x(t))=R and $V_t(t, x(t))+\langle V_x(t, x(t)), x'(t)\rangle=0$. If there exists $\tau\in I$ such that $m(\tau)>R$, we are through.

Assume $m(t) \le R$ for all $t \in [0, 1]$. If there exists $t_0 \in I$ such that $m(t_0) = R$, then $m'(t_0) = 0$ and $m''(t_0) \le 0$ since m(0) = m(1) and $m'(0) \ge m'(1)$ by (e). But this is impossible by the observation made above that $m''(t_0) > 0$. Hence, m(t) < R on I and the conclusion of the theorem follows.

Our next theorem is similar to Theorem 6.1 [5].

THEOREM 3.3. If V is a positive definite bounding Lyapunov function relative to (1) and if there exists S>0 such that for any $\lambda \in [0, 1]$ any solution x(t) of PBVP (12)-(2) with V(t, x(t)) < R on I satisfies ||x'(t)|| < S for $t \in I$, then PBVP (1)-(2) has at least one solution x(t) with V(t, x(t)) < R.

PROOF. Let $D = \{(t, x, x') : t \in I, V(t, x) < R, ||x'|| < S\}$. By Theorem 3.2, solutions of (12)-(2) satisfy (H) relative to D. Hence, by Theorem 1.2, the conclusion follows.

There are several ways of ensuring the a priori bound condition on the derivative of solutions of (12)-(2) and hence we have the following corollaries.

COROLLARY 3.4. If V is a bounding positive definite Lyapunov function for (1) and if f(t, x, x') satisfies (9) and (10) for all $t \in I$, $x \in \Phi$, $||x'|| < \infty$, then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

COROLLARY 3.5. If V is a bounding positive definite Lyapunov function for (1), if f(t, x, x') satisfies (9) for all $t \in I$, $x \in \Phi$, $||x'|| < \infty$, and if there exists $\beta \ge 0$, $L \ge 0$ such that

(14)
$$||f(t, x, x')|| \le \beta(U(t, x, x') + \langle V_x(t, x), f(t, x, x')\rangle) + L$$
 for all $t \in I$, $x \in \Phi$, and $||x'|| \le \infty$, then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

COROLLARY 3.6. If V is a bounding positive definite Lyapunov function for (1), if f(t, x, x') satisfies (9) for all $t \in I$, $x \in \Phi$, $||x'|| < \infty$, and if there exists a function $\rho(t) \in C^2(I)$ such that

(15)
$$||f(t, x, x')|| \le \rho''(t)$$
 for all $t \in I$, $x \in \Phi$, $||x'|| < \infty$, then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

4. Further consequences. In this section, we present two further applications of Theorem 2.1. The first theorem presented shows that the bounding set Φ need not be given in terms of a bounding Lyapunov function. Assume $f(t, x, x'): I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

THEOREM 4.1. Let G be a bounded convex open set in \mathbb{R}^n containing 0 and assume there is a function $N:\partial G \to \mathbb{R}^n$ satisfying:

$$(16) \langle N(x), x \rangle > 0 for all x \in \partial G,$$

(17)
$$\bar{G} \subseteq \{y : \langle N(x), y - x \rangle \leq 0 \text{ for each } x \in \partial G\},$$

(18)
$$\langle N(x), f(t, x, x') \rangle > 0 \quad \text{for all } t \in I, \ x \in \partial G, \\ x' \text{ with } \langle N(x), x' \rangle = 0,$$

then for every $\lambda \in [0, 1]$ every solution x(t) of (12)-(2) is such that $x(\tau) \notin G$ for some $\tau \in I$ or $x(t) \in G$ for all $t \in I$.

REMARK. Conditions (16) and (17) say that N(x) is an outer normal for G. Gustafson and Schmitt [2] have used a similar outer normal condition to study existence of periodic solutions for delay differential equations.

PROOF. Let x(t) be any solution of (12)-(2). If $x(\tau) \notin G$ for some $\tau \in I$, we are through so assume $x(t) \in \overline{G}$ for all $t \in I$.

If $x(t_0) \in \partial G$ for some $t_0 \in I$, we may assume $t_0 \in [0, 1)$. By (16) and (18), $\langle N(x(t_0)), f_{\lambda}(t_0, x(t_0), x'(t_0)) \rangle > 0$ and hence there is an h > 0 such that $\langle N(x(t_0)), x''(t) \rangle > 0$ for all $t \in [t_0, t_0 + h)$. Since $x(t) \in \overline{G}$, $\langle N(x(t_0)), x'(t_0) \rangle = 0$. Looking at the Taylor expansion for x(t), we have immediately that

$$\langle N(x(t_0)), x(t) - x(t_0) \rangle = (t - t_0) \langle N(x(t_0)), x'(t_0) \rangle + \frac{1}{2} (t - t_0)^2 \langle N(x(t_0)), y(\bar{\xi}) \rangle$$

where $y(\bar{\xi}) = (x_1''(\xi), \dots, x_n''(\xi_n))$ and $t_0 < \xi_i < t < t_0 + h$ for all $i = 1, \dots, n$. From this, $\langle N(x(t_0)), x(t) - x(t_0) \rangle > 0$ meaning that $x(t) \notin \bar{G}$, which is a contradiction.

Our existence theorem then follows.

THEOREM 4.2. If G is a bounded convex open set in \mathbb{R}^n containing 0, if there is a function $N: \partial G \to \mathbb{R}^n$ satisfying (16), (17), and (18), and if there exists S > 0 such that for any $\lambda \in [0, 1]$ any solution x(t) of PBVP (12)-(2) with $x(t) \in G$ for all $t \in I$ satisfies ||x'(t)|| < S for $t \in I$, then PBVP (1)-(2) has at least one solution with $x(t) \in G$ for all $t \in I$.

PROOF. Let $D = \{(t, x, x') : t \in I, x \in G, ||x'|| < S\}$. By Theorem 4.1 solutions of (11)-(2) satisfy (H) relative to D. Result then follows immediately from Theorem 2.1.

REMARK. One can state corollaries of the above theorem analogous to Corollaries 3.4, 3.5, and 3.6.

In \mathbb{R}^n , let $x \leq y$ if and only if $x_i \leq y_i$, $1 \leq i \leq n$, and x < y if and only if $x_i < y_i$, $1 \leq i \leq n$.

Let f(t, x, x') be continuous on $\{(t, x, x'): t \in I, \alpha(t) \leq x \leq \beta(t), x' \in \mathbb{R}^n\}$ where $\alpha, \beta: I \rightarrow \mathbb{R}^n, \alpha(t) < 0 < \beta(t)$ are twice continuously differentiable with

(19)
$$\alpha(0) = \alpha(1), \quad \beta(0) = \beta(1), \quad \alpha'(0) \ge \alpha'(1), \quad \beta'(0) \le \beta'(1).$$

Assume also that α , β are strict lower, upper solutions of (1), i.e.,

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x_{n}, x'_{1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\beta'''_{i}(t) < f_{i}(t, x_{1}, \dots, x_{i-1}, \beta_{i}(t), x_{i+1}, \dots, x_{n}, x'_{1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$(20)$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \beta_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

$$\alpha''(t) > f_{i}(t, x_{1}, \dots, x_{i-1}, \alpha_{i}(t), x_{i+1}, \dots, x'_{n}, x'_{1}, \dots, x'_{n}),$$

and

1974]

(21)
$$\alpha_i''(t) > \alpha_i(t), \quad \beta_i''(t) < \beta_i(t)$$

for $\alpha_j(t) \leq x_j \leq \beta_j(t), j \neq i, i=1, \dots, n$.

We now can state our final result.

THEOREM 4.3. If f is continuous on $\{(t, x, x'): t \in I, \alpha(t) \le x \le \beta(t), x' \in \mathbb{R}^n\}$ where α , β are strict periodic lower, upper solutions of (1) satisfying (19), (20), and (21), and if there exists S > 0 such that for any $\lambda \in [0, 1]$ any solution x(t) of (12)-(2) with $\alpha(t) \le x(t) \le \beta(t)$ on I satisfies ||x'(t)|| < S then PBVP (1)-(2) has a solution x(t) with $\alpha(t) < x(t) < \beta(t)$.

The proof is similar to those previously given and is for this reason omitted. By a proper modification of f(t, x, x'), condition (21) can be dropped and equality can be permitted in (20). With that observation, we have a generalization of Theorem 4.1 in [1].

REFERENCES

- 1. J. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32-47.
- 2. G. Gustafson and K. Schmitt, A note on periodic solutions for delay-differential systems, J. Differential Equations 13 (1973), 567-587.
- 3. P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270.
- 4. H. Knobloch, On the existence of periodic solutions of second order vector differential equations, J. Differential Equations 9 (1971), 67-85. MR 43 #3557.
- 5. J. Mawhin, Boundary value problems for nonlinear second order vector differential equations (to appear).
- 6. K. Schmitt, Periodic solutions of systems of second order differential equations, J. Differential Equations 11 (1972), 180-192. MR 45 #3858.
 - 7. J. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302