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A SIMPLE ALTERNATIVE PROBLEM FOR FINDING
PERIODIC SOLUTIONS OF SECOND ORDER
ORDINARY DIFFERENTIAL SYSTEMS!

J. W. BEBERNES

AsstrACT. Existence of solutions for x"=f(, x, x’), x(0)=
x(1), x’(0)=x"(1) are proven by considering a simple alternative
problem to which Leray-Schauder degree arguments can be directly
applied.

1. Introduction. In this paper, we consider the existence of solutions
to the periodic boundary value problem (PBVP)

(1) x =f(t, X, x’),
@ x(0) = x(1), x'(0) =x'(D).

Knobloch [4], Mawhin [5], Schmitt [6], and Bebernes and Schmitt [1]
have recently considered this problem using degree-theoretic arguments—
either finite or infinite dimensional.

Using only the basic properties of Leray-Schauder degree and applying
these degree arguments to a simple alternative problem associated with
(1)-(2), we obtain in this paper a single basic result (Theorem 2.1) which
contains and in some cases permits slight generalizations of most of the
results of the above mentioned papers.

2. The basic theorem. Let /=[0, 1], R" be n-dimensional Euclidean
space with Euclidean norm |-] and inner product (:,-), and let D<=
Ix R"x R™ be a bounded open set in the relative topology of Ix R*x R"
containing {(¢, 0, 0):7 € I'}. Let F: I x R" X R"—R" be a continuous function
and consider

3) x" = F(t, x, X').
For each 4 € [0, 1], associate with (3) the equation
@ x" = AF(t, x, x") + (1 — A)x.
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and assume:
(H) If x(2) is a solution of (4)-(2), then (¢, x(¢), x'(¢))e D for all te I
or there exists = € I such that (=, x(7), x'(7)) ¢ D.

THEOREM. 2.1.  The periodic boundary value problem (3)-(2) has at least
one solution such that (t, x(t), x'(1)) € D for all t € I.

Proor. The periodic boundary value problem
) x"—x=0, x(0=x(1), x'0)=x'()

has no nontrivial solutions. Let H(z, x, x")=F(t, x, x')—x, then x(z) is a
solution of (4)-(2) if and only if x(z) is a solution of

(6) x(t) = A L 6, Hs, x(5), x'(5)) ds

where G (¢, 5) is the unique Green’s function for (5).
Let B={x € C’'[0, 1}: x(0)=x(1), x'(0)=x"(1)} with norm

x| = max lxl + max x|

be the Banach space under consideration, and define
Q={yeB:(t,y(t),y'(t)) e Dforall t € I}.

Note that Q is a bounded open subset of B.
Define the map T:Q—B where Q is the closure of Q by

1
™ (Ty)1) = f G(t, )H(s, y(s), y'(5)) ds.

By standard arguments, T(Q)< B, T is continuous, and cl(T(Q)) is
compact in B.

If 0 ¢ (J—AT)(0L2) where 0Q is the boundary of Q for all 1€ [0, 1],
then by the invariance under compact homotopy property of the Leray-
Schauder degree [7, p. 92], the degree deg(/—AT, Q, O)=constant for
all 2€ [0, 1]. That 0 € (/—AT)(9Q) is equivalent to the existence of a
solution x() of the PBVP (4)-(2) with (¢, x(¢), x'(t)) € D for all ¢ € I and
(t, x(t), x'(1)) € 9D for some ¢ € I; but by assumption (H) there exists no
such solution x(¢) of (4)-(2) with (¢, x(¢), x'(t)) € D for all 1€ and
(¢, x(t), x'(¢)) € 8D for some ¢ € 1. Hence, deg(I—T, 2, 0)=deg(I, Q, 0)=
1. By the existence property of the Leray-Schauder degree [7, p. 88],
there exists x € Q such that (/—T)x=0. This means that there exists a
solution x(¢) of the PBVP (3)-(2) with (¢, x(¢), x'(t)) e Dforall t e I.

3. Applications of the basic theorem. In this section, we illustrate how
Theorem 2.1 can be used to prove existence results for PBVP (1)-(2).



1974] A SIMPLE ALTERNATIVE FOR FINDING PERIODIC SOLUTIONS 123

The first result is known (e.g., [1], [4], or [S]), but it well illustrates the
power of our basic theorem.

THEOREM 3.1. If f(t,x, x') is continuous on Ep={(t, x,x'):t €,
x| <R, |Ix']| < 00} and satisfies:

®) Ix'I2+<(x, f(t, x, x))>0 for all (t,x,x’) € Eg, provided |x|=R
and (x, x")=0;

©) If @, x, XHN=e(Ix'l) for all (t,x,x") € Er where ¢ is a positive
continuous function on [0, o) with [ s/¢(s) ds=+ c0;

(10) there exists =0, K=0 such that

£, x, XY = 2a(Ix'|2 + (x, f(t, x, X)) + K forall (t, x, x') € Ep;
then there exists a solution x(t) of the PBVP (1)-(2) with (¢, x(t), x'(t)) € Eg.

PROOF. Let d,,(s) be a continuous function on [0, c0) with d,.(s)=1
on [0, M] and 6 ,(s)=0 for s=2M where M=M(«, K, R) is the Nagumo-
Hartman bound (see Hartman [3, p. 429]).

Define

F(t, x, x") = o, (Ix' 1 f (2, x, x") on E, and

F(t, x, x') = (R[IxDF(t, Rx/lIx]|, x’) if |x|| Z R.

Then F(¢, x, x') is continuous and bounded on Ix R"x R™ and satisfies
(8) provided |x||=R and (x,x)=0, (9), and (10) for all (¢, x,x')€e
IXR"XR". »

The proof will be completed by showing that there can be constructed
an open bounded set D</Ix R"x R" containing {(¢, 0, 0):¢ € I} such that
solutions of PBVP (4)-(2) satisfy hypothesis (H) relative to D.

For each A€[0,1], let F,(¢, x, x")=AF(t, x, x")+ (1 —=)F(¢, x, x")
where F is defined as above. Then for all 4 € [0, 1] and all (¢, x, x") €
IXR"XR",

(11 Ix'I# + ¢x, F3(t, x, x)) > 0 provided |x| Z R

and (x, x")=0. Let x(¢) be any solution of (4)-(2). Define u(t)=|x(¢)||2=
(x(t), x(t)). Because u(t) satisfies the periodic boundary conditions (2),
u(t) can assume its maximum at t, € I only if u(z,)=0, u’(#,)<0. Claim
u(t)<R? for all t € I. Assume not; then there exists 7, € I at which u(z)
assumes its maximum with u(f))= R, u'(1,)=0, and 4"(1,)<0. But (11)
implies that u”(z,)>0 which is a contradiction. Hence, |x(r)|| <R for all
tel. For (t,x,x')eEp and 1€ [0, 1], F,(t, x, x') is bounded which
implies that F, (¢, x, x’) satisfies a Nagumo-Hartman condition (conditions
(9) and (10) with «=0 and a K’ in general different from K and ¢(s)=K’).
Hence, there exists an M'>0 such that if x() is any solution of (4) on I
with || x(¢)| <R, then ||x' ()| <M’.
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Define D={(t, x, x'):t €I, | x|| <R, || x'| <M'}. From the observations
made above it is immediate that solutions of (4)-(2) satisfy (H) relative
to D. By Theorem 2.1, the PBVP (3)-(2) has a solution x(z) with [ x(¢)[| <R.
Since F(t, x, x') satisfies (9) and (10), [|x'(z)| <M on [0, 1] which implies
that x(z) is a solution of PBVP (1)-(2) on I with (¢, x(¢), X'(¢)) € Eg.

Equality can be permitted in (8) by an approximating argument like
the one given in [3, p. 433].

The preceding theorem can be generalized by replacing |x[> by a
function V(z, x) which plays essentially the same role. In so doing, we
obtain results similar to those obtained by Knobloch [4] and Mawhin [5].

Assume f (¢, x, x"):Ix R*x R"—R" is continuous and let R+ denote the
nonnegative reals.

DermNITION. Let V e C((Ix R"x R", R*) be such that:

(a) there exists R>0 such that ®={xeR":¥V(t,x)<R,tel} is
bounded, -

(b) U(t, X, xl)E Vtt(t’ x)+2(Vtz(t9 X), x,>+<Vu(t, x)x', x,>§0’

© Vi(t, x)=U(, x, x")+(V (¢, x), f(t, x, x"))>O0 provided V(t, x)=R
and V,(z, x)+ (V. (2, x), x')=0,

(d) (V.(z, x), x)>O0 for all (¢, x) such that V(z, x)=R,

(e) V(O’ X)= V(l ’ X), Vt(09 x)+<Vz(Os X), x,>§ Vz(l, x)+<Vz(19 X), x'>'

Any such V is called a bounding Lyapunov function relative to (1).

THEOREM 3.2. If V is a bounding Lyapunov function for (1), then for
every A € [0, 1] every solution x(t) of the PBVP:

(12) x" = fi(t, x, x')

where f,=Af+(1—A)f is such that V(r,x(7))>R for some 7€l or
V(t, x(1))<R for all t € I.

PrROOF. Let x(f) be any solution of the PBVP (12)-(2) and let m(t)=
V(t, x(1)), then m'()=V,(t, x(1))+(V,(t, x(1)), x'(¢)) and

(13)  m'(@®) = U@, x@), x'(0) + (V,(t, x(1)), fu(t, x(1), X' (©)))-

By (b), (c), and (d), m"(1)>0 if V(z, x(t))=R and V,(t, x(t))+
(V(t, x(1)), x'())=0. If there exists 7 €I such that m(r)>R, we are
through.

Assume m(t)<Rforall ¢ € [0, 1]. If there exists 7, € I such that m(z;))=R,
then m'(7,)=0 and m"(t,) <0 since m(0)=m(1) and m'(0)=m’'(1) by (e).
But this is impossible by the observation made above that m”(#,) >0. Hence,
m(t)<R on I and the conclusion of the theorem follows.

Our next theorem is similar to Theorem 6.1 [5].
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THEOREM 3.3. If V is a positive definite bounding Lyapunov function
relative to (1) and if there exists S>>0 such that for any A € [0, 1] any solu-
tion x(t) of PBVP (12)-(2) with V(t, x(t))<R on I satisfies | x'(t)| <S for
t € I, then PBVP (1)-(2) has at least one solution x(t) with V(t, x(1))<R.

ProoF. Let D={(t, x,x"):tel, V(t, x)<R, |x'||<S}. By Theorem
3.2, solutions of (12)-(2) satisfy (H) relative to D. Hence, by Theorem
1.2, the conclusion follows.

There are several ways of ensuring the a priori bound condition on the
derivative of solutions of (12)-(2) and hence we have the following
corollaries.

COROLLARY 3.4. If V is a bounding positive definite Lyapunov function
for (1) and if f (¢, x, x") satisfies (9) and (10) forall t€ I, x € D, ||x’|| < 0,
then PBVP (1)-(2) has a solution x(t) € ® for all t € I.

COROLLARY 3.5. If V is a bounding positive definite Lyapunov function
Sfor (1), if f(¢, x, x') satisfies (9) for allt €I, x e D, ||x'|| < 0, and if there
exists =0, L=0 such that
14  1f@ x, x| = BUE, x, x) + (Vo(t, x), f (8, x, X)) + L .
foralltel, x e ®, and | x'| £ o0, then PBVP (1)-(2) has a solution x(t) € ®
foralltel

COROLLARY 3.6. If V is a bounding positive definite Lyapunov function
for (1), if f(¢, x, x') satisfies (9) for allte I, x € D, ||x'|| < o0, and if there
exists a function p(t) € C*(I) such that
1% Wfx N Zp() foralltel xe®, x| < o,
then PBVP (1)-(2) has a solution x(t) € @ for all t € I.

4. Further consequences. In this section, we present two further
applications of Theorem 2.1. The first theorem presented shows that the
bounding set ® need not be given in terms of a bounding Lyapunov
function. Assume f (¢, x, x):Ix R x R"—R" is continuous.

THEOREM 4.1. Let G be a bounded convex open set in R™ containing 0
and assume there is a function N:0G—R" satisfying:

(16) (N®),x) >0 for all x € 3G,
(A7) G < {y:(N(x),y —x) =0 for each x € 0G},
a9) (N(x),f(t,x,x)y >0 foralltel, x€9G,
x" with (N(x), x'y = 0,

then for every A € [0, 1] every solution x(t) of (12)-(2) is such that x(7) ¢ G
for some relorx(t)eG foralltel
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ReMARK. Conditions (16) and (17) say that N(x) is an outer normal
for G. Gustafson and Schmitt [2] have used a similar outer normal con-
dition to study existence of periodic solutions for delay differential equa-
tions.

ProOF. Let x(¢) be any solution of (12)-(2). If x(7) ¢ G for some 7 €I,
we are through so assume x(¢) e G for all 1€ I.

If x(t,) € 0G for some ¢, € I, we may assume ¢, € [0, 1). By (16) and (18),
(N(x(20)), f (0> X(2), x"(25)))>0 and hence there is an 2>0 such that
(N(x(to)), x"(£))>O0for all £ € [t,, t,+h). Since x(¢) € G, (N(x(t,)), x'(t)))=
0. Looking at the Taylor expansion for x(z), we have immediately that

(N(x(t)), x(2) — x(t))
= (t — 1) (N(x(t)), X' (1)) + 3(z — 1)*N(x(29), y(£))

where y(§)=(x](£), - - - , xa(£,)) and £, < &;<t<ty+hforalli=1, -, n.
From this, (N(x(t,)), x(t)—x(t,))>0 meaning that x(z) ¢ G, which is a
contradiction.

Our existence theorem then follows.

THEOREM 4.2. If G is a bounded convex open set in R™ containing 0,
if there is a function N:0G—R" satisfying (16), (17), and (18), and if there
exists S>0 such that for any A € [0, 1] any solution x(t) of PBVP (12)-(2)
with x(t) € G for all t € I satisfies ||x'(t)||<S for t € I, then PBVP (1)-(2)
has at least one solution with x(t) € G for all t € I.

Proor. Let D={(t, x,x"):tel, xeG, |x'|<S}. By Theorem 4.1
solutions of (11)-(2) satisfy (H) relative to D. Result then follows immedi-
ately from Theorem 2.1.

REMARK. One can state corollaries of the above theorem analogous to
Corollaries 3.4, 3.5, and 3.6.

In R*, let x<y if and only if x;<y,, 1=<i=n, and x<y if and only if
x;<y;, 1=5isn.

Let f (¢, x, x") be continuous on {(z, x, x'):t € I, a(t)=x=p(t), x’ € R}
where «, f:I—R", a(t) <0< B(t) are twice continuously differentiable with

19)  «(0) = (1), BO)= (1), «'(0)= (1), B'(0) =p(1).
Assume also that «, § are strict lower, upper solutions of (1), i.e.,
a”(t) >fi(t’ X1 " "0 5 X1 “i(t)’ Xig1s * " 5 Xy x;., Y
20) N xz{—,h a;ﬁ(t)’ x1{+1, ot ,X;‘),
ﬁi (t) <fi(t’ X159 X1y ﬂi(’)’xﬁl’ T Xpe Xyttt
x;——v ﬂ:(t): x1{+19 Tt x;,),

(
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and

@D () >aft),  Bi(1) <)

for «;(t)<x,=ZB,(1), j##i, i=1,+ -+, n.
We now can state our final result.

THEOREM 4.3. If f is continuous on {(t,x,x'):t€l, a(t)<x=p(1),
x' € R™} where a, f are strict periodic lower, upper solutions of (1) satisfying
(19), (20), and (21), and if there exists S>O0 such that for any 4 € [0, 1]
any solution x(t) of (12)-(2) with a(t)Sx(t)<p(t) on I satisfies ||x'(1)|| <S
then PBVP (1)-(2) has a solution x(t) with a(t)<x(¢)<f(?).

The proof is similar to those previously given and is for this reason
omitted. By a proper modification of f(z, x, x), condition (21) can be
dropped and equality can be permitted in (20). With that observation, we
have a generalization of Theorem 4.1 in [1].
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