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A SIMPLE  ALTERNATIVE PROBLEM FOR  FINDING
PERIODIC SOLUTIONS OF SECOND ORDER

ORDINARY DIFFERENTIAL SYSTEMS1

J. w. bebernes

Abstract. Existence of solutions for x"=f{t,x,x'), x(0)=

x(l), x'(0)=x'(l) are proven by considering a simple alternative

problem to which Leray-Schauder degree arguments can be directly

applied.

1. Introduction. In this paper, we consider the existence of solutions

to the periodic boundary value problem (PBVP)

(1) x" =f(t,x,x'),

(2) x(0) = *(1),       x'(0) = x'(l).

Knobloch [4], Mawhin [5], Schmitt [6], and Bebernes and Schmitt [1]

have recently considered this problem using degree-theoretic arguments—

either finite or infinite dimensional.

Using only the basic properties of Leray-Schauder degree and applying

these degree arguments to a simple alternative problem associated with

(l)-(2), we obtain in this paper a single basic result (Theorem 2.1) which

contains and in some cases permits slight generalizations of most of the

results of the above mentioned papers.

2. The basic theorem. Let 7=[0, 1], Rn be «-dimensional Euclidean

space with Euclidean norm ||-|| and inner product (•,•>, and let £><=

IxRnxRn be a bounded open set in the relative topology of IxRnxRn

containing {(t, 0, 0) : t e /}. Let F:IxRnx Rn->Rn be a continuous function

and consider

(3) x" = F(t, x, x').

For each A e [0, 1], associate with (3) the equation

(4) x" = XF(t, x,x') + (l - K)x.
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and assume :

(H) If x(f) is a solution of (4)-(2), then (t, x(t), x'(0) g D for all t e I

or there exists r e I such that (t, x(t), x'(t)) £ D.

Theorem. 2.1. The periodic boundary value problem (3)-(2) has at least

one solution such that (t, x(t), x'(t)) G D for all t e I.

Proof.   The periodic boundary value problem

(5) x" - x = 0,       x(0) = x(l),       x'(0) = x'(l)

has no nontrivial solutions. Let H(t, x, x')=F(t, x, x')—x, then x(/) is a

solution of (4)-(2) if and only if x(t) is a solution of

(6) x(0 = X i G(t, s)H(s, x(s), x'(s)) ds

where G(t, s) is the unique Green's function for (5).

Let F={x G C'[0, l]:x(0) = x(l), x'(0)=x'(l)} with norm

|x| = max ||x(/)|| + max ||x'(i)||
i i

be the Banach space under consideration, and define

Ü = {y e B: (t,y(t),y'(t)) e D for all / e I}.

Note that O is a bounded open subset of B.

Define the map T: ü-»-F where Ù is the closure of Í2 by

(7) (Ty)(t) "fa, s)H(s, y(s), y'(s)) ds.

By standard arguments,  F(Ü)<=F,  T is continuous, and cl(F(í¿)) is

compact in B.

If 0 <£ (I-XT)(dü) where dû. is the boundary of Q for all X e [0, 1],

then by the invariance under compact homotopy property of the Leray-

Schauder degree [7, p. 92], the degree deg(7— XT, D, 0)=constant for

all X e [0, 1]. That 0 g (I—XT)(dQ) is equivalent to the existence of a

solution x(t) of the PBVP (4)-(2) with (t, x(t), x'(t)) e D for all / g /and

(t, x(t), x'(t)) e 3D for some tel; but by assumption (H) there exists no

such solution x(t) of (4)-(2) with (/, x(r), x'(/)) e D for all tel and

(r, x(r), x'(t)) e dD for some t e I. Hence, deg(/- T, Q, 0)=deg(7, Ü, 0)=

1. By the existence property of the Leray-Schauder degree [7, p. 88],

there exists xeD. such that (I—T)x=0. This means that there exists a

solution x(0 of the PBVP (3)-(2) with (/, x(t), x'(t)) g D for all t e I.

3. Applications of the basic theorem. In this section, we illustrate how

Theorem 2.1 can be used to prove existence results for PBVP (l)-(2).
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The first result is known (e.g., [1], [4], or [5]), but it well illustrates the

power of our basic theorem.

Theorem 3.1. If f(t,x, x') is continuous on ER={(t,x,x'):te I,

\\x\\ <R, \\x'\\ < oo} and satisfies:

(8) \\x'\\*+(x,f(t,x,x'))>0 for all (t,x,x')eER provided \\x\\=R
and (x, x')=0;

(9) \\f(t, x, x')\\^ç>(\\x'\\) for all (t, x, x') e EB where q> is a positive

continuous function on [0, oo) with J"00 sj<p(s)ds= + oo;

(10) there exists a^O, Ä_0 such that

\\f(t, x, x')\\ ^ 2x(\\x'\\* + (x,f(t, x, x'))) + K for all (t, x, x') e ER;

then there exists a solution x(t) ofthePBVP (l)-(2) with (t, x(t), x'(t)) e ER.

Proof. Let ôM(s) be a continuous function on [0, oo) with ôM(s)=l

on [0, M] and oM(s)=0 for j_2M where M=M(ct, K, R) is the Nagumo-

Hartman bound (see Hartman [3, p. 429]).

Define

F(t, x, x') = ôM(\\x'\\)f(t, x, x') on ER,   and

F(t, x, x') = (*/IW|)F(/, Rxl\\x\\, x')   if ||x|[ ̂  R.

Then F(t, x, x') is continuous and bounded on IxRnxRn and satisfies

(8) provided \\x\\^R and (x,x')=0, (9), and (10) for all (t,x,x')e
IxRnxRn.

The proof will be completed by showing that there can be constructed

an open bounded set D^IxRnxRn containing {(/, 0, 0) : t e 1} such that

solutions of PBVP (4)-(2) satisfy hypothesis (H) relative to D.

For each X e [0, 1], let Fx(t, x, x')=XF(t, x, x')+(l -X)F(t, x, x')

where F is defined as above. Then for all A e [0, 1 ] and all (/, x, x') e
IxRnxRn,

(11) IIjc'H2 + (x, Fx(t, x, x')) > 0   provided ||jc|| ̂  R

and (x, x')=0. Let x(t) be any solution of (4)-(2). Define u(t)=\\x(t)\\2=

(x(t), x(t)). Because u(t) satisfies the periodic boundary conditions (2),

u(t) can assume its maximum at r„ e / only if u(t0)=0, u'(to)^0. Claim

u(t)<R? for all / e /. Assume not; then there exists i0 e / at which u(t)

assumes its maximum with u(t0)^Rz, u'(t0)=0, and u"(to)^0. But (11)

implies that ti"(f0)>0 which is a contradiction. Hence, ||x(f)||<i? for all

tel. For (t, x, x')eER and A e [0, 1], F¡,(t, x, x') is bounded which

implies that Fx(t, x, x') satisfies a Nagumo-Hartman condition (conditions

(9) and (10) with a=0 and a K' in general different from K and tp(s)=K').

Hence, there exists an M'>0 such that if x(t) is any solution of (4) on /

with \\x(t)\\<R, then \\x'(t)\\<M'.
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Define D={(t, x, x'):te I, ||x|| <F, ||x'|| <M'}. From the observations

made above it is immediate that solutions of (4)-(2) satisfy (H) relative

to D. By Theorem 2.1, the PBVP (3)-(2) has a solution x(/) with ||x(/)|| <F.

Since F(t, x, x) satisfies (9) and (10), ||x'(i)|| <M on [0, 1] which implies

that x(t) is a solution of PBVP (l)-(2) on / with (t, x(t), x'(t)) e ER.

Equality can be permitted in (8) by an approximating argument like

the one given in [3, p. 433].

The preceding theorem can be generalized by replacing ||x||2 by a

function V(t, x) which plays essentially the same role. In so doing, we

obtain results similar to those obtained by Knobloch [4] and Mawhin [5].

Assume/(?, x, x'):IxRnxRn-»-Rn is continuous and let F+denote the

nonnegative reals.

Definition.   Let F g C2(Ix Rn x Rn, F+) be such that :

(a) there exists F>0 such that <&={xeRn:V(t, x)<F, t el} is

bounded,

(b) U(t, x, x')= Vtt(t, x)+2(Vtx(t, x), x')+<Fxx(i, x)x', x'>^0,

(c) V"f(t, x)=U(t, x, x')+(Vx(t, x),f(t, x, x')»0 provided V(t, x)=R

zndVt(t,x)+(Vx(t,x),x')=0,

(d) (Vx(t, x), x»0 for all (t, x) such that V(t, x)=R,

(e) V(0, x)=V(l, x), Vt(0, x)+(Vx(0, x), x')^Vt(l, x)+(Vx(l,x), x').

Any such Fis called a bounding Lyapunov function relative to (1).

Theorem 3.2. If V is a bounding Lyapunov function for (1), then for

every A g [0, 1] every solution x(t) of the PBVP:

(12) x" =fx(t, x, x')

where fx=Xf+(l — X)f is such that  V(r,x(r))>R for some t e I or

V(t,x(t))<RforallteI.

Proof. Let x(r) be any solution of the PBVP (12)-(2) and let m(t)=

V(t, x(t)), then m'(t)= Vt(t, x(t))+(Vx(t,x(t)), x'(t)) and

(13) m"(t) = U(t, x(t), x'(t)) + (Vx(t, x(t)),fk(t, x(t), x'(t))).

By (b), (c), and (d), m"(t)>0 if V(t, x(t))=R and Vt(t, x(t))+

(Vx(t, x(t)),x'(t))=0. If there exists reí such that m(r)>R, we are

through.

Assume m(t)^R for all t e [0, 1]. If there exists r0 e /such that m(t0)=R,

then m'(t0)=0 and m"(t0)^0 since m(0) = m(l) and m'(0)^m'(l) by (e).

But this is impossible by the observation made above that m"(t0) >0. Hence,

m(t)<R on / and the conclusion of the theorem follows.

Our next theorem is similar to Theorem 6.1 [5].
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Theorem 3.3. If V is a positive definite bounding Lyapunov function

relative to (1) and if there exists S>0 such that for any X e [0, 1] any solu-

tion x(t) ofPBVP (12)-(2) with V(t, x(t))<R on I satisfies \\x'(t)\\<Sfor
tel, then PBVP (l)-(2) has at least one solution x(t) with V(t, x(t))<R.

Proof. Let D={(t, x, x'):t el, V(t,x)<R, \\x'\\<S}. By Theorem

3.2, solutions of (12)-(2) satisfy (H) relative to D. Hence, by Theorem

1.2, the conclusion follows.

There are several ways of ensuring the a priori bound condition on the

derivative of solutions of (12)-(2) and hence we have the following

corollaries.

Corollary 3.4. If V is a bounding positive definite Lyapunov function

for (1) and iff(t, x, x') satisfies (9) and (10) for all tel, xe O, ||x'|| < oo,

then PBVP (l)-(2) has a solution x(t) e O for all t e I.

Corollary 3.5. If V is a bounding positive definite Lyapunov function

for (1), ///(/, x, x') satisfies (9) for all tel, xe <J>, ||x'|| < oo, and if there

exists /S^O, £_0 such that

(14) ||/(r, x, x')\\ ^ ß(U(t, x, x') + (Vx(t, x),f(t, x, x'))) + L

for alltel,xe O, and \\x'\\ _ oo, then PBVP (l)-(2) has a solution x(t) e $

for all t e I.

Corollary 3.6. If V is a bounding positive definite Lyapunov function

for (I), iff(t, x, x') satisfies (9) for alltel,xe 0, ||x'|| < oo, and if there

exists a function p(t) e C2(I) such that

(15) \\f(t, x, x')\\ ^ p"(t)  for alltel,xe <D, ||x'|| < oo,

then PBVP (l)-(2) has a solution x(t) e $ for all t e I.

4. Further consequences. In this section, we present two further

applications of Theorem 2.1. The first theorem presented shows that the

bounding set O need not be given in terms of a bounding Lyapunov

function. Assume/(?, x, x'):IxRnxRn—>-Rn is continuous.

Theorem 4.1. Let G be a bounded convex open set in Rn containing 0

and assume there is a function N: dG-*-Rn satisfying:

(16) (N(x),x)>0  forallxedG,

(17) G £ {y: (N(x), y - x) ^ 0  for each x e dG},

(N(x),f(t,x,x'))>0  forallteI,xedG,

(   ' x' with (N(x), x') = 0,

then for every X e [0,1] every solution x(t) of (12)-(2) is such that x(t) $ G

for some re I or x(t) e G for all tel.
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Remark. Conditions (16) and (17) say that N(x) is an outer normal

for G. Gustafson and Schmitt [2] have used a similar outer normal con-

dition to study existence of periodic solutions for delay differential equa-

tions.

Proof. Let x(i) be any solution of (12)-(2). If x(t) $ G for some t g /,

we are through so assume x(t) e G for all t e I.

If x(r0) g dG for some t0 e I, we may assume t0 e [0, 1). By (16) and (18),

{N(x(t0)),fx(t0, x(t0), x'(r0)))>0 and hence there is an «>0 such that

(N(x(t0)), x"(t))>0 for all t g [í0, /„+«). Since x(?) G G, (N(x(t0)), x'(t0))=

0. Looking at the Taylor expansion for x(f), we have immediately that

(N(x(t0)), x(t) - x(t0))

= (t- t0)(N(x(t0)), x'(t0)) + W - /0)2</V-(x(i0)), j(|)>

wherey(l)=(x¡(£), • • •, *»(|J) and t0<^<t<t0+h for all i=l, • • • , n.
From this, (N(x(t0)), x(t)—x(to))>0 meaning that x(t) £ G, which is a

contradiction.

Our existence theorem then follows.

Theorem 4.2. If G is a bounded convex open set in Rn containing 0,

if there is a function N: 3G-*-Fn satisfying (16), (17), and (18), and if there

exists S>0 such that for any X e [0, 1] any solution x(t) of PBVP (12)-(2)

with x(t) e G for all tel satisfies \\x'(t)\\ <S for t e I, then PBVP (l)-(2)
has at least one solution with x(t) e G for all tel.

Proof. Let D={(t,x,x'):tel, xeG, ||x'||<5}. By Theorem 4.1

solutions of (11)-(2) satisfy (H) relative to D. Result then follows immedi-

ately from Theorem 2.1.

Remark. One can state corollaries of the above theorem analogous to

Corollaries 3.4, 3.5, and 3.6.
In Rn, let x^y if and only if x¿^yu 1 ̂ /^«, and x<y if and only if

Xi<yu l^i^n.

Let/(r, x, x') be continuous on {(/, x, x'):t e I, x(t)^x<:ß(t), x' e Rn}

where a, ß:I-+Rn, x(t)<0<ß(t) are twice continuously differentiable with

(19)       a(0) = a(l),   ß(0) = ß(l),   x'(0) ^ x'(l),    ß'(0) ^ ß'(l).

Assume also that a, ß are strict lower, upper solutions of (1), i.e.,

<*"(0 >fi(t,x1, ■ ■ ■ ,Xi_lt Xi(t),Xi+1, ■ • • ,xn,xi, • • •,

ßtif) <fÀUx1, ■ ■ ■ ,x<_i,/?X*)»*<+i. • ■ • ,xn,xi,---,

xi-l> ßi(t)> xi+l> " ' > X„),
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and

(21) «0 >*¿t),       ß"(t)<ßi(t)

for a.f(t)<Xi<tßi(t),ji*U i=l, • • • , n.
We now can state our final result.

Theorem 4.3. If f is continuous on {(t,x,x'):t e I, <x(t)^x^ß(t),

x e Rn} where a, ß are strict periodic lower, upper solutions of (I) satisfying

(19), (20), and (21), and if there exists S>Q such that for any X e [0, 1]

any solution x(t) of (12)-(2) with x(t)^x(t)^ß(t) on I satisfies \\x'(t)\\<S

then PBVP (l)-(2) has a solution x(t) with a.(t)<x(t)<ß(t).

The proof is similar to those previously given and is for this reason

omitted. By a proper modification of f(t, x, x'), condition (21) can be

dropped and equality can be permitted in (20). With that observation, we

have a generalization of Theorem 4.1 in [1].
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