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COMPARISON THEOREMS FOR SPECIAL CLASSES
OF NONSELFADJOINT ELLIPTIC EQUATIONS

KURT KREITH1

Abstract. Known comparisons for nonselfadjoint elliptic equa-

tions are strengthened in cases where the coefficients of these

equations satisfy special conditions. These improved comparison

theorems are also considered in the context of a related eigen-

value problem.

1. Introduction. In [1] a class of Sturmian comparison theorems is

established for nonselfadjoint elliptic equations of the form

(1) lu = -V • a(x)(Vu)T + 2b(x)(Vuf + c(x)u = 0,

(2) Li> = -V • A(x)(Vv)T + 2B(x)(SJvf + C(x)v = 0,

whose coefficients are real and defined in a domain Z>c £«. These theorems,

to be restated below, assume no special relationship among the coeffi-

cients of (1) and (2) nor any special condition other than smoothness and

ellipticity. The present paper is concerned with some stronger theorems

which can be established when certain special conditions or relationships

are assumed.

The formulation and proofs of such theorems are simplified by the

matrix notation a=(aü) and A = (Atj) for i, j=\, • ■ • , n and the vector

notation b=(b1, • ■ ■; bn) and B=(BU • • ■ , Bn). Inequalities for matrices

are to be interpreted in terms of positive definiteness. Thus in (1) it is

assumed that a(x), b(x), and c(x) are of class C2, C1 and C, respectively,

and that a=a*>0; analogous assumptions are made with regard to (2).

Given a nodal domain D for a solution u(x) of (1), conditions are

sought which assure that every solution v(x) of (2) must have a zero in

D. Such conditions involve functions g(x) and G(x) defined by

(3) g = ba-W,       G = BA-XBT,

and require that L be appropriately majorised by /. Specifically, the
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techniques of [1] show that if

if[Vu(a - A)(Vu)T + 2u(b -B+ p)(Vu)T

(4) ÍJ
+ (c-C-G + V -pT)u2] dx ^ 0

for some C1 vector function p(x), then the conditions of a Sturmian

comparison theorem are satisfied. Choosing p(x)=0, (4) follows from

(5) a > A > 0,       c-C-G-(b- B)(a - A)~\b - Bf ^ 0,

conditions (5) having previously been established by Dunninger [2] and the

author [3]. Choosing p(x)=B(x)—b(x), (4) follows from

(6) a 1% A > 0,       c - C - G + V • (B - b) ^ 0,

conditions (6) having previously been established by Swanson [4] and

Allegretto [5].

An example of a stronger result which can be established in special

cases is contained in [6]. Here it is shown that if a(x)=A(x) and b(x)=

B(x) in D, then the condition

(7) c - C ^ 0

assures the validity of a Sturmian comparison theorem for (1) and (2).

In other words, under the above special assumption, the nonnegative

term G(x) may be dropped in (6).

A number of the theorems in this vein will be established below. The

results will also be considered in the context of a related eigenvalue

problem studied by Allegretto [7].

2. Conservative vector fields. Our basic observation is that the sub-

stitution u(x)=P(x)U(x) transforms (1) into

lu = -PV • a(VU)T + 2(Pb - VPa)(VU)T

+ (cP-V- a(VP)T + 2b ■ (VP)T)U = 0,

while v(x)=R(x)V(x) transforms (2) into

Lv = -RV • A(yV)T + 2(RB - VRA)(W)T

+ (CR - V • A(VR)T + 2B ■ (VR)T)V - 0.

These transformations are especially important in case b(x)a~1(x) and

B(x)A~1(x) are conservative vector fields—i.e. if there exist C2 functions

f(x) and £(x) such that

(8) AcT1 = V/,       A4"1 = Vf.
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Theorem 1.   If D isa nodal domain for a solution u(x) of (I), and if in D

(i) a^A>0,

(ii) bcr1=Vf, BA~1=VF,
(iii) c-C+g-G-V ■ (b-B)^O,

then every solution v(x) of (2) has a zero in D.

Proof. Choosing P(x)=ef(x) and R(x)=eF{x), (V) and (2') become

(1") lu = P[-V • a(VUf + (c + g - V • b)U] = 0

and

(2") Lv = R[-V ■ A(VVf + (C + G-V- B)V] = 0,

respectively. Thus U(x) and V(x) satisfy selfadjoint elliptic equations

obtained by setting the expressions inside the brackets equal to zero.

Applying well-known comparison theorems for selfadjoint elliptic equa-

tions (see for example [8]) and making use of the fact that U(x) and V(x)

have the same oscillation properties as u(x) and v(x) respectively, the

theorem follows.

Thus if the coefficients of (1) and (2) satisfy (8), then the nonnegative

expression g(x) may be added to the left side of the second inequality in

(6), thereby strengthening the comparison theorems of [1] and [4].

In case bcr1 and BA*1 are not conservative, they may still have con-

servative components allowing a decomposition of the form

(9) ba-1 =Vf+s,       BA-1 = VF + S.

In this case the substitutions u=efU and v=eF V yield

e~flu = -V • a(VU)T + 2sa(VU)T

(10) + (c - V • a(Vf)T + g - sasT)U = 0

and

e~FLv m -V • A(VV)T + 2SA(VV)T
(11) + (C - V • A(VF)T + G- SAST)V = 0,

to which previously cited comparison theorems can be applied. One case

of special interest is that where a(x)=A(x) and s(x)=S(x) so that ba-1—

BA-1 is conservative. In this case (7) yields the following.

Theorem 2.   IfD is a nodal domain for a solution u(x) of (I), and if in D

(0 a=A,
(ii) BA-1-bcr1=Vh,

(iii) c-C+g-G+V ■ (B-b)>0,
then every solution v(x) of (2) has a zero in D.
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In case A=I and the vector fields s and S are solenoidal, then

V • a(V/f = V • b   and   V • A(VF)T = V • B.

An application of (6) to equations (10) and (11) then yields the following.

Theorem 3.   If D is a nodal domain for a solution u(x)of(\) and if in D

(i) a=A=I,

(ii) b = Vf+s, where V • s=0; B= V£+5, where V • 5=0,
(iii) c-C+g-G+V ■ (B-b)-ssT^0,

then every solution v(x) of (2) has a zero in D.

In case V/=V£=0, g=ssT and condition (iii) of Theorem 3 reduces to

(iii) c-C-SST^0.

3. Bounds for eigenvalues. Comparison theorems for (1) and (2) are

intimately related to eigenvalue problems of the form

(11) lu = Xu,   in D,       u = 0,   on dD,

and

(12) Lv = Au,   in D,       v = 0,   on dD.

This relation follows from the fact that (11) has a distinguished real simple

eigenvalue X0 which is smaller than any other real eigenvalue. The eigen-

function i/0(x) corresponding to X0 may be taken positive in D while all

other eigenfunctions change sign in D; (12) has a distinguished eigenvalue

A0 with corresponding properties. The conclusion of the above comparison

theorems (to the effect that solutions of (2) have a zero in D) is equivalent

to the inequality A0_^0 (see [7]).

Allegretto [7] has studied the relationship between the distinguished

eigenvalues of (11) and (12) where L is given by (2) and the operator of

(11) is of the form la=i(L+L*)+q so that (11) becomes

lQu m -V • A(Vu)T + (C-V-B+q)u = Xu,   in D,

u = 0,   on dD.

Letting X0(q) denote the smallest eigenvalue of the operator defined by

(11') it follows readily from the variational characterization of X0 that

Ao(0)^Ao. On the other hand, it follows from (6) that A0^A0(G) where

G=BA~lBT. Thus, as also shown in [7], we always have

(13) A0(0) = A, <• X0(G).

The transformation of (2) into (2") yields the following result first estab-

lished by Allegretto [5, Corollary 6].

Theorem 4.   IfBA~l=VF then A0=X0(G).
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There remains the question of the effect of a solenoidal component

S on estimates for A„. The following example shows that the addition of a

solenoidal component to B may not affect A0. The equation

2x 2y „,22,
-A» + ——; vx + -Tj—i vy - 4(x2 + y2)v = 0

x + y x + y

has solution v(x,y)=cos(x2+y2). Choosing

D = {(x, y) | 77/2 < x2 + y2 < 3tt/2}

it follows that (12) with

2B = (2x/(x2 + y2), 2yl(x2 + y2)) = V logix2 + y2),

C = -4(x2 + y2)

satisfies Ao=0. Here G=BBT=ll(x2+y2), so that by Theorem 4

\(x' + /)/\(x2 + f))

However for any constant k the equation

x + y x + y

also has the solution v(x, y)=cos(x2+y2). Thus (12) with

B=V[\\oz(x2+y2)]-\k(-y,x),

C = -4(x2 + y2),

also satisfies Ao=0. However now G=BBT=(\k2+\)l(x2+y2) so that if

rc#0, then A0(G)>A0.

It would be of interest to obtain' a general theorem which sharpens the

estimate (13) in terms of the conservative and nonconservative compo-

nents of BA-1.

Added in proof. A simplified and more general proof of (7) has

recently been given by C. Y. Chan (Bull. London Math. Soc. (to appear)).

Condition (4) also follows from an identity of C. A. Swanson (Proc.

Amer. Math. Soc. 37 (1973), 537-540).
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