THE VOLUME OF A REGION DEFINED BY POLYNOMIAL INEQUALITIES

O. S. ROTHAUS¹

ABSTRACT. Let P(x) be a polynomial on \mathbb{R}^n with nonnegative coefficients. We develop a simple necessary and sufficient condition that the set $S = \{x \in \mathbb{R}^n | x_i \ge 0, P(x) \le 1\}$ shall have finite volume. A corresponding result where P(x) is replaced by a collection of polynomials is an easy corollary. Finally, the necessary and sufficient conditions for the special case that P is a product of linear forms is also given.

Let P(x) be a polynomial on \mathbb{R}^n with nonnegative coefficients, and without constant term (to avoid trivial complications).

$$P(x) = \sum_{v=1}^{k} r_v x_1^{c_{v(1)}} x_2^{c_{v(2)}} \cdots x_n^{c_{v(n)}}, \qquad r_v > 0.$$

The vectors $c_v = (c_{v(1)}, c_{v(2)}, \cdots, c_{v(n)})$ are called the exponents of P. Let C be the closed convex cone in \mathbb{R}^n generated by the c_v , i.e., the elements of C are all linear combinations $p_1c_1+p_2c_2+\cdots+p_kc_k$ with $p_i \ge 0$. Let $\langle \ , \ \rangle$ be the usual inner product in \mathbb{R}^n , and let C^* be the dual cone to C with respect to this scalar product; i.e., C^* is the set of $y \in \mathbb{R}^n$ such that $\langle y, x \rangle \ge 0 \ \forall x \in C$. Note that C^* contains the first 2^n -gant in \mathbb{R}^n , so C^* has nonempty interior.

There are several well-known features of the above situation, which it is easy to establish using separation properties of convex sets. Thus if b is not an interior point of C, there exists $d \in C^*$, $d \neq 0$, such that $\langle d, b \rangle \leq 0$. While if $b \neq 0$ is an interior point of C, then there exists a positive constant p such that $\langle d, b \rangle \geq p \langle d, d \rangle^{1/2} \ \forall d \in C^*$, as an easy compactness argument shows. Then we have

THEOREM 1. The set $S = \{x | x_i \ge 0, P(x) \le 1\}$ is of finite volume if and only if the vector $m = (1, 1, \dots, 1)$ is an interior point of C. (In particular, C must have a nonempty interior.)

Received by the editors February 26, 1973.

AMS (MOS) subject classifications (1970). Primary 52A20; Secondary 10E05, 10E15.

¹ Work partially supported by NSF GP8129.

PROOF. (S is convex, but we do not need this fact.)

$$Vol S = \int_{x \ge 0, P(x) \le 1} dx = \int_{P(e^{-u}) \le 1} e^{-\langle m, u \rangle} du.$$

Now pick a vector y such that $\langle c_v, y \rangle \ge \log kr_v$. Then if $u \in C^* + y$,

$$P(e^{-u}) = \sum_{v=1}^{k} r_v e^{-\langle c_v, u \rangle} \le \sum_{v} r_v \frac{1}{kr_v} = 1.$$

So $\{u \in \mathbb{R}^n | P(e^{-u}) \leq 1\} \subset \mathbb{C}^* + y$.

Also pick a vector w such that $\langle c_v, w \rangle \leq \log r_v$. Then if $P(e^{-u}) \leq 1$, we must have $r_v e^{-\langle c_v, u \rangle} \leq 1$, which implies that $\langle c_v, u \rangle \geq \log r_v$, which implies that $\langle c_v, u - w \rangle \geq 0$, i.e., $u \in w + C^*$.

Thus the set $\{u \in \mathbb{R}^n | P(e^{-u}) \leq 1\}$ is contained in some translate of C^* , and contains a second translate. It follows that Vol S is finite if and only if $\int_{C^*} e^{-\langle m,u \rangle} du$ is finite. But if m is an interior point of C, then $\langle m,u \rangle \geq p \langle u,u \rangle^{1/2}$ for $u \in C^*$, and the integral is obviously finite. While if m is not an interior point, it is easy to see that the above integral diverges, completing the proof.

COROLLARY. Let P_1, P_2, \dots, P_r be polynomials on \mathbb{R}^n with nonnegative coefficients. The set

$$S = \{x \mid x_i \ge 0, P_1(x) \le 1, P_2(x) \le 1, \dots, P_r(x) \le 1\}$$

is of finite volume if and only if $m=(1, 1, \dots, 1)$ is an interior point of the cone generated by the exponents of all the polynomials P_i .

For if $x \in S$, then $r^{-1}P_1(x)+r^{-1}P_2(x)+\cdots+r^{-1}P_r(x) \leq 1$, while if $P_1(x)+P_2(x)+\cdots+P_r(x) \leq 1$, $x \in S$.

Next, we apply the above theorem to the case when P(x) is a product of linear forms on \mathbb{R}^n .

$$P(x) = \prod_{v=1}^{k} (a_{v(1)}x_1 + a_{v(2)}x_2 + \cdots + a_{v(n)}x_n),$$

each linear form having nonnegative coefficients not all zero. Let U be a subset of $\{1, 2, \dots, n\}$. We say that the support of the linear form $a_1x_1+a_2x_2+\dots+a_nx_n$ is U if $a_i\neq 0$ for $i\in U$, and $a_i=0$ for $i\notin U$. For any subset U, let N(U) be the number of linear forms in product for P(x) whose support is contained in U. Then we have:

THEOREM 2. Vol S is finite if and only if for every proper subset U, we have N(U)/card U < k/n.

To prove the "if" part, let $u=(u_1, u_2, \dots, u_n) \in C^*$, and suppose without loss of generality that $u_1 \ge u_2 \ge \dots \ge u_n$. For $1 \le r \le n$, put $N_r = N(\{1, 2, \dots, r\})$. Then the vector $c = (N_1, N_2 - N_1, N_3 - N_2, \dots, N_n - N_{n-1})$ is an exponent of P.

Hence

$$\langle c, u \rangle = N_1(u_1 - u_2) + N_2(u_2 - u_3) + \cdots + N_{n-1}(u_{n-1} - u_n) + ku_n$$

 $\leq (k/n)(u_1 + u_2 + \cdots + u_n)$

with equality if and only if $u_1=u_2=\cdots=u_n$. Since $\langle c,u\rangle\geq 0$, we obtain $\langle m,u\rangle>0$ if the components of u are not all equal. While if the components of u are all equal and not all zero, then since $u\in C^*$, the components of u are all positive, and again $\langle m,u\rangle>0$. This proves that m is an interior point of C, and completes the proof of "if".

For the "only if" part, suppose that, for $U=\{1, 2, \dots, r\}$, $N(U)/r \ge k/n$. We will show m cannot be an interior part of C. Consider the vector u whose first r components are equal to n-r, and whose remaining n-r components are equal to -r. For any exponent $c=(c_1, c_2, \dots, c_n)$, we have

$$\langle c, u \rangle = (c_1 + c_2 + \cdots + c_r)(n-r) - (c_{r+1} + \cdots + c_r)r$$

= $(c_1 + c_2 + \cdots + c_r) \cdot n - kr$.

As c runs through all exponents of P, $\langle c, u \rangle$ will be minimum when $c_1+c_2+\cdots+c_r$ is as small as possible, i.e., when $c_1+c_2+\cdots+c_r=N(U)$. Since $N(U) \ge kr/n$, we have always $\langle c, u \rangle \ge 0$ for any exponent c. Hence $u \in C^*$; but $\langle m, u \rangle = 0$ and this proves m is not an interior point of C, and completes the proof.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850
DEPARTMENT OF MATHEMATICS, THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL