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UNIFORM CONVERGENCE FOR A HYPERSPACE

R. J. GAZIK

Abstract. In this note a uniform convergence in the collection

C(E) of nonempty, compact subsets of a separated uniform con-

vergence space E is defined. This convergence is compared with the

hyperspace convergence on C(E) and it is shown that the two

convergences agree on Richardson's class T. In the case of a regular

7\ topological space (E, t) this means that there is a uniform con-

vergence structure on E, which induces 7, such that uniform conver-

gence in C(E) is convergences in the Vietoris topology on C(E).

1. Definition of uniform convergence. Let C(£) be the collection

of nonempty, compact subsets of a Hausdorff topological space (£, t).

Then C(£) may be equipped with the Vietoris topology. If, in addition,

(£, t) is completely regular and *% is a uniform structure which induces t,

then C(£) also carries the uniform topology. A classical result is that the

Vietoris and uniform topologies agree on C(£) (see [6]).

Now let C(£) be the collection of nonempty, compact subsets of a Haus-

dorff convergence space (£, i) (see [3]). There is a reasonable way to

generalize the Vietoris and uniform topologies to this setting. In fact,

in [4] a convergence h(t) for C(£) was defined. It was shown that h(t) is

the Vietoris topology for topological t. Moreover h(t) is Hausdorff

(regular) (compact) whenever / is Hausdorff (regular) (compact and

regular). But no additional properties of t (such as complete regularity)

are needed to make a reasonable definition of uniform convergence in

C(£) and this is done below.

Let (£, J') be a separated uniform convergence space (see [2]). In [1]

Cochran defined a U* base for ß to be a base ß for # such that each

member of ß is coarser than the diagonal filter, each member of ß is its

own inverse, the composition of any two members of ß exists and is finer

than a third member, and the infimum of two members of ß is again in ß.

Each uniform convergence space has a U* base; put ß=(Jecf:J^

[A], J=J~1). It should also be pointed out that each Hausdorff topological

space (£, t), indeed each Hausdorff convergence space (£, t), has a

uniform convergence structure ß, constructively defined, such that
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t(ß)—the convergence induced by ß—is the same as t (Cochran [1]

and Keller [5]).

Remark. With respect to the definition below, notice that the conver-

gence defined depends on ß but not on the choice of a U* base for ß.

Definition. Let C(E) be the collection of nonempty, t(ß) compact

subsets of a separated uniform convergence space (£, ß) and let ß

be a U* base for /. For Jeß, VeJ, define T(J, V) to be the set of all

ordered pairs (A, B), A, B e C(E), such that A^V(B), B<=V(A), and

define T(J) to be the filter generated by the T(J, V), VeJ. The structure

ß of uniform convergence in C(E) is the uniform convergence structure

generated by the T(J), Jeß.

Theorem 1. Let (£, ß) be a separated uniform convergence space.

Then

(a) ß indeed is a uniform convergence structure for C(E);

(b) if ß is a uniform structure then t(ß) is the uniform topology;

(c) a filter O on C(E) converges relative to t(ß) to Ae C(E) if and only

//Ox À}Z T(J)for some Jeß.

Proof, (a) Since ß is a U* base, each member of ß contains the diag-

onal so T(J, V)jí0 and T(J) is a filter. If D is the diagonal filter in C(E) x

C(£) then D^.T([A.]) so D eß. Each member of ß is its own inverse,

hence (r(J))_1^J(7). Since each member of ^ is finer than a finite in-

fimum of T(J)'s, it follows that the inverse of a member of^ is again in ß.

Finally, notice that if/, Jx, J2, ■ ■ ■, Jn e ß then

(1) T(J) « (A T(J())^ A T(J o JihJi o J). Since each / ° /«a/, o J is finer

than a member of ß we may apply (1) repeatedly to show that the com-

position of two members of ß is again in ß when it exists.

(b) If ß is a uniform structure, ß itself is a U* base of one element and

it is obvious that t(ß) is the uniform topology.

(c) This follows from the definition, the fact that ß is a U* base and the

inequality A 2T/,)>r(A/,).

2. Comparison of t(ß) and h(t(ß)). If C(£) is the collection of non-

empty t(ß) compact subsets of a separated uniform convergence space

(£, ß), there are two convergences defined on C(E), namely the con-

vergence t(ß) defined in §1 and the hyperspace convergence h(t(ß)) of

[4] with respect to the convergence t(ß) induced by ß. Theorem 2 below

compares these in general.

Notice that a filter a in a uniform convergence space (£, ß) t(ß)

accumulates at x 6 £ if and only if there exists Jeß, such that £ s a

and VeJ implies £nF(x),¿0. We abbreviate this by saying "i/(/)

accumulates at x with respect to J".
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Theorem 2. If (E, ß) is a separated uniform convergence space,

t(f)^h0(<f)).  '

Proof. Let 0->/4 relative to t(#) so that <&xÂ^.T(J) for some

J e ß, ß a Li* base for ,f. In order to show that d> h(t(f)) converges to A

it must be proved that (I) and (2) of Definition 2.1 of [4] hold.

Proof of (1). Suppose that (x, g) is a selection of a cofinal segment

(D,f) of 0). Let V e J and d e D.
(a) There exists r(V) e O such that 5= V(A) for each Ber(V).

(b) There exists p(d, V)^.d such thaU (p(d, V)) <=/•( I/). The statements

(a) and (b) come, respectively, from the convergence of d> and the fact

that (D,f) is a cofinal segment of <I>. Since (x, g) is a selection of (D,f),

(a) and (b) imply

(c) (x(p(d, V)), a(p(d, V))) e V for some a(p(d, V)) e A. Direct DxJ

with the product order; that is (d, V)~£.(e, U) if and only if d^.e and K<= i/.

Then (a(p(d, V)):(d, V) e DxJ) is a net in -4 whose section filter accum-

ulates at some a e A with respect to some K e ß. (A is compact.)

Now let VeJ, We K, de D. From the remarks above there is an

(e, U)^(d, V) such that (a(p(e, U)), a) e W. By (c)

(x(p(e, U)),a(p(e, U)))eUc V.

These last two statements mean that (x(p(e, U)), a)e V ° W with

p(e, U)^.d. This in turn means that the section filter S(x) t(ß) accumulates

at a with respect to JoK<í f. Hence S(x) t(f) accumulates at a point

of A.
Proof of (2). Let a e A. If (V, r) e7x0 use the convergence of <1>

to see that there is an/( V, r) c r,f( V,r)e<&, such that A <= V(B) whenever

3ef(V, r). With Jx<& ordered with the product order, (Jx<t>,f) is a

cofinal segment of O. Also, clearly, J(a)->-a. It is asserted that (Jx<t>,f)

and J(a) satisfy (2) of Definition 2.1 of [4]. For, if V(a) e J(a) and r e d>

there is a U e /such that (/-'c (/. (J=J-1 forJeß.) Whenever B ef( W, s),

(W,s)^.(U,r), the relation A<^YV(B)cU(B) is a consequence of the

properties of/so (a, b)e U for some ¿eß. Then (/;, a) e Í/-1 c K, hence

Sn K(a)?í 0. This completes the proof.

Without restrictions on f we cannot hope to obtain equality in Theorem

2, even if very strong conditions are placed on t(fí). The following

illustrates the point.

Example. Let (£', t) be a Hausdorff topological space and let S be a

finite subset of £. Define T(S)=A (N(x)xN(x):x eS)/\D where N(x)

is the neighborhood filter at x and D is the diagonal filter. It is easy to

see that the collection of T(S), S finite, generates a uniform convergence

structure ,f on £and, in fact, t(/)=t.
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In particular, let (£, t) be the closed unit disk with the usual topology.

By Theorem 2.2 of [4], h(t(ß)) is the Vietoris topology on C(£). But

notice that t(ß) is not compact, even though (£, ß) is. Hence uniform

convergence in C(£) is not the same as the hyperspace convergence

h(t(ß)).
With respect to this example and Theorem 3.7 of [4] one might reason-

ably ask the following question. If (£, ß) is compact and regular, does

there exist a uniform convergence structure Jf for £, with t(Jf)=t(ß),

such that ipO is compact? The author does not know the answer.

Richardson [7] defined a class T of uniform convergence structures for

£ as follows: ß e T if and only if there exists Jeß such that whenever

x e £ and a.-*x, then <x^/(x). We will call such a J a fixed member of ß

for convenience. A fixed member of ß may be taken to be symmetric and

coarser than the diagonal filter.

Lemma 1. Let ß e V with J a fixed member of ß. If A is a compact

subset of(E, ß) and VeJ, then A<= V(F)for some finite subset F of A.

Proof. If not, Ar\(V(F))'^0 for each finite subset £ of A. The

filter generated by the AC\(V(F))' accumulates at some point a e A

with respect to the same/. Then A n(F(fl))'n(/(a)#0—a contradiction.

Theorem 3.   // (£, /) is separated and ß eT then t(ß)=h(t(ß)).

Proof. Let ß be a U* base for ß and suppose 0-<vl relative to

h(t(ß)). In order to show that <S>-+A relative to i(ß) it suffices to prove

the following.

(a) For some Keß, whenever U e K there exists r £ O such that B c

U(A) for all Ber.

(b) For some Le ß, whenever Ue L there exists r e O such that

Ac U(B) for all fier.

Proof of (a). Suppose (a) is false for K=J, J a fixed member of ß.

There is some VeJ such that, whenever teO, g(r)<t V(A) for some

g(r)er. Hence there exists x(r)eg(r)—V(A). If O is ordered by r—\s

if rcj, and/is the identity map on O, then (x, g) is a selection of the

cofinal segment (O,/) of O. Since 0->-/l relative to h(t(ß)), S(x)—the

section filter of x—accumulates at some a e A with respect to / (for ß eT).

Thus, if r is arbitrary in O there isanscr for which x(s) e V(a). But this

contradicts x(s) $ V(A).

Proof of (b). We assert that (b) is true for L=J ° /, / a fixed member

of ß. By Lemma 1 :

(1) If V e J, A c V(F) for some finite subset F<=A. The following is also

true.
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(2) If a e A, VeJ, there exists r(a, V) e í> such that whenever

B e r(a, V), then a e V(B).

For suppose (2) is false. For r e <ï> there exists g(r) e r with a $ V(g(r)).

The filter a of Definition 2.1 of [4] is finer than J(a) so that, for some r,

g(r) nU(a)j¿ 0, U~l<^V, UeJ. From this, there is some y eg(r) such

that a e U~1(y)cz V(y)cz V(g(r)). This is a contradiction and (2) holds.

Finally, let V<> VeJoJ. Use (1) and (2) and put r=f) (r(a, V):aeF).

Let fier and z e A. Then z e V(a) for some a e F and a e V(B) so z e

(V° V)(B) follows and we conclude that Ac(V° V)(B). This completes

the proof.

Theorem 4 is an immediate consequence of the result above, Theorem

2.2 of [4], and the major result of [7]. In this regard notice that in [7]

Richardson actually constructs f from the neighborhood filters, so that

f is constructively defined.

Theorem 4. Let C(E) be the collection of nonempty, compact subsets

of a regular 7", topological space (£, t). There exists a uniform convergence

structure ß for E, with t(fí) = t, such that t(£) is the Vietoris topology on

C(E).

Necessary and sufficient conditions on f which insure t(ß)=h(t(tf))

would be very interesting. The author knows only the partial result in

Theorem 3.
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