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OPEN MAPS OF CHAINABLE CONTINUA

IRA ROSENHOLTZ

Abstract. It is apparently "well known" that the image of the

closed unit interval under an open map is homeomorphic to the

closed unit interval (see [13], [11], and [15]). In this paper, we gen-

eralize this result to chainable continua. In particular, the fact that

the open continuous image of a chainable continuum is also

chainable is proved, answering a question of A. Lelek (see [10]).

This fact, as well as its proof, implies that the open continuous

image of the pseudo-arc is also a pseudo-arc. An additional

corollary (of the proof) is that a local homeomorphism of a chain-

able continuum is actually a homeomorphism. The proofs are all

very elementary.

0. Preliminaries. All spaces are assumed to be metric. A continuum is a

compact connected metric space. The statement that a continuum X is

chainable means that, for each positive real number e, X possesses a

finite cover consisting of open subsets Cu C2, • • •, Cn of X, each having

diameter less than e, with the property that Cf intersects C, if and only

if j=i—{,j=i, oTj=i+{. (Roughly speaking, Zmust have open covers

consisting of small sets which fit together "like a chain.") Such an open

cover will be called an e-chain, and the C/s will be referred to as links.
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For example, an arc, a topologist's sine curve (i.e. the closure in the plane

of {(x, sin 7r/2x)|0<x^l}), and a pseudo-arc (see [1], [14]) are chainable,

while a simple closed curve and the letter "T" are not.

A point p of a chainable continuum X is called an endpoint of X if

for each positive number e, there is an £-chain of X such that only the

first link contains p. Thus, an arc has two endpoints and a topologist's

sine curve has three endpoints. The pseudo-arc has the fantastic property

that it is chainable and all of its points are endpoints. This, in fact, charac-

terizes the pseudo-arc up to homeomorphism (see [3]).

If/» and q are points of a continuum X, and no proper subcontinuum

of X contains both p and q, then X is irreducible between p and q. If X is

irreducible between some pair of its points, then X is called irreducible.

For example, an arc is irreducible between its endpoints, and is therefore

irreducible, while a simple closed curve and the letter "7"' are not. It is

fairly well known that chainable continua are always irreducible.

Finally, a map is a continuous function. A function from X onto Y is

open if the image of each open subset of X is an open subset of Y. If X is

compact, then a map from X onto Y is monotone (respectively, light) if the

inverse image of each point of Y is connected (respectively, totally

disconnected).

1. Open maps.   We now proceed to some theorems.

Theorem 1.0.   Suppose X is a chainable continuum and fis an open map

from X onto a space Y. Then Y is also a chainable continuum.

Proof. Y is clearly compact and connected. Thus Y is a continuum.

(Remember, we are assuming metric—though Hausdorff would have been

sufficient here, since Y has a countable basis.)

Now suppose that e is a positive real number. We wish to show that

there is an ¿--chain of Y. To begin, there is a positive number b such that

if the distance between two points of X is less than b, then the distance

between their images in Y is less than s. Let Cl5 C2, • • ■ , Cn be a d-chain

of X. Define

D1 = /(Q), D4 = /(C4) - /(Q u C2),

D2 = f(C2), D5 = /(C5) - f(C\ U C2 U C3),

D3=f(C3)-f(Cx),

Dj+2=f(Ci+2)-f((jCky
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continuing as long as the D's remain nonempty. We will show that the

D's form an ¿--chain of Y.

First, each Dk is clearly open, and, by the definition of <5, has diameter

less than e.

Next, since the C's are a ó-chain of A', notice that, for each k, Ck is

contained in Ci_1UCJfcuCl+1, and therefore (J*=1 C,- is contained in

U*íí C¡. Hence, for each ;', £>( contains /(Q)— (J/=i f(Ct). Now since

f{€1)KJfCCi)\J- ■ -U/(CJ equals

/(O U </(C2) -/(Q)) U • • • U (/(ÇJ - U/(Q)),

this is contained in D¿üD2\J- • -U/)m. Therefore, since/ is assumed to

to be onto, this implies that the -Z)'s cover y

Finally, it is clear that D¡ does not intersect Dk if y and k differ by more

than one. Since we already know that Fis connected and the D's cover

y, this also implies that, for each k, Dk intersects Dk+1. This completes

the proof.

Corollary 1.1. A nondegenerate open continuous image of an arc is

an arc.

Proof. Using the fact that chainable continua are irreducible, it is

easy to see that the only nondegenerate locally connected (or even path-

connected) chainable continuum is an arc.

Corollary 1.2. Iffis an open map from the chainable continuum X

onto Y, then the image of each endpoint of X is an endpoint of Y.

Proof.   This is immediate from the proof of Theorem 1.0.

Theorem 1.3. A nondegenerate open continuous image of the pseudo-

arc is again the pseudo-arc.

Proof. This follows from Corollary 1.2 and the fact that the pseudo-

arc is the only nondegenerate chainable continuum, each point of which is

an endpoint [3].

Remark. A person might conceivably try to simplify the proof of the

fact that the pseudo-arc is homogeneous by getting an open map of the

pseudo-arc onto something homogeneous (say, a simple closed curve)

and having homogeneous point inverses (say, Cantor sets)—see [4].

Theorem 1.3 implies that any such attempt is doomed to failure.

Question 1. Theorem 1.0 answers a question raised by A. Lelek in his

paper Some problems concerning curves [10]. In the same paper he also

raises the related question: "Is the confluent image of a chainable con-

tinuum also chainable?" (The statement that the map /from A onto B
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is confluent means that if A" is a continuum in B, then each component

of/"-1 (K) maps onto all of K under/.) By a theorem of Whyburn (see [15]),

open maps defined on compact spaces are confluent, so an affirmative

answer to this question would, of course, generalize Theorem 1.0. The

author does not as yet know the answer to this question. McLean has

some nice results in this direction (see [12]).

2. Local homeomorphisms. If/is a map from X onto Y, then the

statement that/is a local homeomorphism means that each point of X lies

in an open set which/sends homeomorphically onto an open subset of Y.

(In particular, a local homeomorphism is an open map.)

We prove the following aesthetically pleasing result.

Theorem 2.0. Suppose that X is a chainable continuum and that the map

f from X onto a space Y is a local homeomorphism. Then f is actually a

homeomorphism.

Proof. Since/is a local homeomorphism and X'\s compact, there is

a positive number ô such that if C is a set of diameter less than ô, then

/restricted to C is a homeomorphism.

Let Clt C2, ■ • • , C„ be a ó/3-chain of X, and let Dlt D2, • • • , Dm be

the corresponding chain of Fas constructed in the proof of Theorem 1.0.

Recall that, for eachy, D¡ is contained in/(C,). Thus, since the restriction

f\C}; is a homeomorphism, the function (/|C,-)-1:.D,—»-C,- is a well-defined

map. In addition, if y e D¡r\Dj+l, then y ef(C))r\f(Cj+-¡), so, since

f\t,OCm is a homeomorphism, (f\Cj)-1(y)=(f\Cj+1)-1(y). Thus, the
functiong: Y-*-Xdefined by g\D¡=(f |C,)-1 is well-defined and continuous.

Since f(g(y))=y for y e Y, g is one-to-one. By the continuity off, g is an

open map, so it is actually onto, and therefore a homeomorphism onto

X. But/is its inverse, so/is a homeomorphism.

Remark. This is a "now you see it, now you don't" proof. The link D,

appears to have part of'f(C¡) removed, but it actually did not. (Shades

of Houdini!) When I first tried to prove this theorem, I started with very

small chains of X, but I could not see how to prevent the images of the

links from "coming back" and haunting me. Even having "seen" the trick,

I still do not understand why it works. Here are some related questions.

Question 2. Open maps from one continuum to another are local

homeomorphisms if, and only if, they are exactly n-to-1, for some positive

integer n. Are there any exactly n-to-1 maps from one chainable continuum

to another—much less open ones ? (Somewhat surprisingly, for n greater

than 2, there exist exactly n-to-1 maps from an arc onto a simple closed

curve.) See [6], [8], and [9].
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Question 3. Using Hamilton's result [7] it is possible to show, even

more easily than in the proof of Theorem 2.0, that there are no exactly

2-to-l open maps (hence local homeomorphisms) defined on any chainable

continuum. Are there any exactly 2-to-l maps from any chainable con-

tinuum to a metric space, at all ? There are no exactly 2-to-1 maps of the

arc. See [8].

Question 4. In what ways can Theorem 2.0 be generalized? For ex-

ample, is a local homeomorphism defined on a plane continuum which

does not separate the plane, necessarily a homeomorphism? For a start,

see [5].

Theorem 2.0 implies its own generalization.

Corollary 2.1. Suppose fis an open map from X onto Y, where X is

chainable. And suppose, furthermore, that n is a positive integer such that for

each y e Y, f~*(y) has exactly n components. Then «=1—that is, f is

monotone.

Proof. By Whyburn's "factorization theorem" (see [15]), the open

map/can be factored "uniquely" into the form/(x)=z(m(x)), where the

map m:X->-Z is monotone and z:Z-»-Y is light open. Now use Bing's

theorem that monotone images of chainable continua are chainable [2],

the fact that an exactly w-to-1 open map is a local homeomorphism, and

Theorem 2.0.

3. Some examples. After considering elementary examples, one might

be tempted to conjecture that the open continuous image of a chainable

continuum is homeomorphic to a subcontinuum of the domain. That this

is false is "shown" by the next example.

Example 3.0. Let Q be the "continuous arc of pseudo-arcs" described

in Bing and Jones' paper [4]. Then Q is a chainable continuum, and there

is an open map q from Q onto the closed unit interval [0, 1] so that the

inverse image under q of each point is a pseudo-arc. However, Q contains

no arc.

The statement that a function/is one-to-one atp means that/7 is a point

in the domain off and/-1/ (p)={p}- In many cases, it appears that, for

an open map of a chainable continuum, being one-to-one at an endpoint

is sufficient to guarantee that it is a homeomorphism. Recalling the proof

of Theorem 1.0, we see that if the map/is one-to-one at the endpoint p,

and if we chain the continuum with/? in the last link, then the construction

is forced to go "all the way." But again the appearance is not the fact,

as the next two examples show.

Example 3.1. Let Q and q be as in Example 3.0. Let Q* be the space

obtained by smashing the end pseudo-arcs (^_1(0) and q_1({)) to points,
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and let/denote the natural projection of Q onto Q*.f is monotone, so

Q* is chainable.

Let g be the map from Q* to the interval [0, 1], gotten by "finishing

the job that/started"—i.e. g smashes the rest of the pseudo-arcs to points.

That g is an open map is easily verified, and g is one-to-one at both

endpoints (f(q~1(0)) and f(q~l({))).

However, clearly g is not a homeomorphism.

Example 3.2. There exist nontrivial period two homeomorphisms of

the pseudo-arc. These induce light (in fact at most 2-to-l) open maps of

the pseudo-arc which must be one-to-one at an endpoint, but which are

not homeomorphisms.

In our last example, we show that a chainable continuum can have

uncountably many nonhomeomorphic open images.

Example 3.3. Let Q and q be as in Examples 3.0 and 3.1. Let Q**

be the chainable continuum obtained by smashing each of the pseudo-arcs

q-1^), q-!({), q-1^), ?_1(i), q~\i), • * • to points. Let 5 be a subset of the

positive integers. For those « belonging to S (and only those), squash

each pseudo-arc of Q** "between 1/2« and 1/(2«—1)" to points. This

technique yields open maps of Q**, which are seen to have nonhomeo-

morphic images for distinct subsets of the positive integers.

Added in proof. The author has found an example of a chainable

continuum which admits an exactly 2-to-l map, thus answering Question 3.
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