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Abstract. It is proved from the Continuum Hypothesis that

there exists an co-distributive complete Boolean algebra which is

not cu^representable.

Karp [1, Corollary to main theorem] shows that there is an to-

distributive non-^l-representable ^-complete Boolean algebra. Karp

later pointed out that, for every cardinal K^\2°\, there is an co-distributive

non-|2ö|-representable AT-complete Boolean algebra. The following

strengthens the completeness requirement.

Theorem 1. The Continuum Hypothesis implies the existence of an

to-distributive non-co^representable complete Boolean algebra.

In [3, Definition 1.2], the property PK was defined for cardinals K. We

will prove the following theorem.

Theorem 2. 7/'|2t°|<|20>1|, then there exists an to-distributive complete

Boolean algebra that does not have the property Pa .

Theorem 1 is a consequence of Theorem 2, since the Continuum

Hypothesis implies both |2">|<|20>1| and (by [3, Theorem 4.2]) the equiv-

alence of coj-representability with property Pa¡.

Assuming the negation of Souslin's Hypothesis, Smith's [3, Theorem

3.4] implies our theorems. However, R. Jensen has shown that Souslin's

Hypothesis is consistent with the Continuum Hypothesis; so Smith's

result does not imply ours.

1. Preliminaries. Let (o be the first infinite cardinal; a»! is the first

uncountable cardinal; x* is the set of all functions from y into x; |x| is the

cardinal of x (cardinals are initial ordinals); Dm(x) is the domain of

function x; x\y is the restriction of a function x to the domain Dm(x)ny.

We assume the axiom of choice.
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The Boolean algebraic definitions are essentially those of [2]. A Boolean

algebra C is ordered by: a^b iff the infimum ahb=a. C is A^-complete if

the infimum (or meet) A S exists for each set S of no more than K many

elements of C. Then the supremum (or join) V S exists for all such S.

C is complete if the infimum of every set of elements exists. A /¿-complete

Boolean algebra C is AT-distributive iff

A    V    A(x,ß)<   VA A(*,H{ol))
x<Kß<K HeK* x<K

for all functions A into C. A Boolean algebra is Â-representable iff

it is isomorphic to the quotient of a A^-field of sets by a A'-ideal. Smith

defined the following distributive-like property PK which implies K-

representability.

Definition. A Boolean algebra C has the property PK iff: if A is a

function from Ä'xÄ'into Cand if A,<f Vi<Ä: A(&, ß) exists and is not

zero, then there is a function H from K into K such that, for all y<K,

either Aa<y A(a, H(ct)) does not exist or else is not zero.

A subset S of C is dense iff S does not contain the zero of C and, for all

nonzero elements b of C, there exists x e S such that x^b.

The following is well known and is related to "forcing".

A set S ordered by 2| satisfies

,.. for all x%y, there exists z^x such that,

for all w, not both w ^ y and w ^ z

if and only if there exists an (algebraically unique) complete Boolean

algebra C such that S is a dense subset of C and the ordering of C extends

that of 5. (See [2, Example 12(B)] and [2, §35].)

If S is dense in C and x,y, z range over S, then: x^A X iff, for all

b e X, x^b; .^complement of b iff, for all z, not both z^x and z^b;

x^ V X iff, for all y^x, there is z^y and beX such that z^b.

2. Proof of Theorem 2. Assume Q=|2°'|<|20'1|- Suppose there did

not exist an co-distributive complete Boolean algebra not having property

Pai. It will suffice to reach a contradiction. Let X be the set of all nonempty

countable sequences / into 2a (i.e., of all functions / whose nonempty

domain is a countable ordinal and whose range is a subset of 2m).

Define & to be the set of all F such that : F is a function from a subset

of X into X; if F(/) defined, then Dm(F(f))=T>m(f)+l ; if F(f) defined,
then so is F(/[a)= F(/)f(a+l) whenever 0<a<|Dm(/).

There exists a í2-sequence E that enumerates the set of all ordered pairs

(ft) such thatfeX and countable t^X, each such pair occurring Í2

tirnes in the sequence E.
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By induction on a^Q, F„ will now be constructed such that Fa e!F,

|Fa|^|coUoc|, and Fß extends Fx whenever a</?^£2.

For limit ordinal A^fí, let Fx be the union of all Fx, a<A. (In particular,

F0 is empty.)

Given F=FX, a<Q, G=FX+1 is defined by cases as follows. In each

case below, note that G e¿F,G extends F, and G has only countably more

elements than F. (Cases 1, 2, 3 are for Lemmas 1(1), 1(2), 2 respectively.)

Case 1. £(a) is some (/, 0) such that Dm(/)=2. Since (2<u)1 has car-

dinality greater than Fx, there is h e (2a)1 such that F(h) is not defined.

Extend F to G by: G(A)=/; G(k)=F(k) whenever defined.

Case 2. F(a) is some (/, {g}) such that /has a domain y+l, g has a

domain ô<y, and F(g)=f\(ô+l). Then there is h e (2ay such that h

extends g and F(h\(ô+l)) is not defined. Then F(h[ß) is defined iff

0<ß^o; for such ß, h\ß is g\ß. Extend F to G by: G(AtjS)=/f(/5-t-l)
whenever á</?5íy; G{k)=F{k) whenever defined.

Case 3. £(a) is some (/, r) such that:/has a domain y+l ; for every

A: e /, F(A:)c/is defined; there are O many A e (2a)y such that A is a union

of elements of t. Then there exists h e (2a)y such that A is a union of

elements of t but F(h) is not defined. Extend F to G by : G(h)=f; G(k)=F(k)
whenever defined.

Case 4.   The first three cases do not hold. Let G be F.

This finishes the construction of Fx, a^Q. From now on, let F be Fn.

Given B e (2T1. define F to be {f\F(f)<=B}.
F will turn out to be a dense subset of a complete co-distributive Boolean

algebra. But first some facts about T will be proved.

Lemma 1. (1) T is nonempty. (2) If g is in both T and (2°)i and if

<5<y<co1, then g has at ¡east two distinct extensions in T(~\(2w)y. (3) Iffe T

and nonzero ß^Dm(f), thenf\ß e T.

Proof. (1) For some a, F(a) is (B\2, 0). By Case 1 of the construction

of Fi+1, there is h such that Fa+1(h)=B{2. Then F{h)=B\2 and this h is in

T.

(2) Then for some ß<Q, Fß(g)=B[(o+l) is defined. For Q many

<x.>ß, F(a) is (B\(y+l), {g}). For each such a, by Case 2 of the con-

struction of Fa+1, there is assigned h e (2a)y such that h extends g,

F.+i{h)=B\(y+l), and Fa{h) is not defined. Then h is in m^T and h
extends g. Since Fx{h) is not defined, h was not assigned to a smaller a;

thus, distinct such a's give distinct h's.

(3) F(f)c B. Thus F(/) is defined. Since F 6-.F, F(/|/3)£F(/)=.8. Thus,
flßeT.
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Lemma 2. If countable f Ç T and there are Q. many h e (T'y such that

h is a union of elements oft, then there exists h e Tr\(2'°y such that h is a

union of elements of t.

Proof. For each ket, F(k)<=B and some Ft(k), ß<Q, is defined.

Since Q is not cofinal with <x>, there exists ß<£l such that, for all ket,

Fß(k) is defined. For some <x>ß, F(a) is (B\(y+l), t). Then Case 3 of the

definition of Fx+1 gives h e (2af such that A is a union of elements of / and

F*+i(h)=Bl(y+l). Then F(h)<=B and heT.
Order T by: f^g iff/extends g. Then T satisfies (1) of §1. So there is a

(algebraically unique) complete Boolean algebra C such that J is a dense

subset of C and the ordering of C extends that of T.

Lemma 3.   C is an to-distributive Boolean algebra.

Proof. Suppose that A is a function on u> x K into C. By the definition

of co-distributivity and by the fact that T is dense in C, it suffices to show

for every/e T that: if/<Am V^ A(m, a), then there is A G F such that

h^f and, for all m<m, h^A(m, a) for some H(m)=x<K.

Define P{r) e T for r e2m by the following induction on m<co. Let

F(0)=/. Suppose P(r)^f defined for all re2m. Let ß(m) be the least

upper bound of {Dm(F(r))|r g 2m). Consider any r e 2m. Let u and v be

the two extensions in 2m+1 of r. Since P(r)5j/<Va A(m, a.), there exists

geT such that g^P(r) and g^A(m, a) for some a. By Lemma 1(2),

there exist distinct extensions P(u) and P(v) oí g such that they both have

the same domain greater than ß(m).

Put t={P(r)\re2m for some m<œ}. Let y=\Jmß(m). By Lemma 2,

there exists h e Tr\(2'°y such that A is a union of some elements of t.

Then h^P(0)=f Consider any m<œ. There is r e 2m+1 such that P(r)^h.

There is <x<K such that h<P(r)^A(m, a).

Lemma 4.    F has an uncountable chain.

Proof.   Define A on a>1x2 into C by

A(<aß + m, i) = V {fe T \f(ß)(m) = i},    ß < Wl, m < a>, i < 2.

By Lemma 1(2), for every g e T there is/^g such that ß e Dm(/) and

hence f^A(wß+m,f(ß)(m)). Thus since Fis dense, it follows that each

V¿ A(a)ß+m, i) is the identity of C. Since C is a complete co-distributive

Boolean algebra, it must have property Pa>x (by our earlier supposition,

which is used here only). By PWi, there exists a function H on m1 into 2

such that, for all yK^, the infimum Aß<yA(ß, H(ß)) is nonzero. Let

J= {fe X\f(ß)(m)=H(coß+m) for all j8<Dm(/) and m<o>}. Then / is an
uncountable chain of functions. It now suffices to prove J^ T. Consider

any/G/. Let a=Dm(/) and y=cox. Since Fis dense, there exists geT,
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g^Aß<yA(ß,H(ß)). Then g(ß)(m) = H(coß+m) for all ß<<x, m<a>; so

gl<x is/. By Lemma l(3),/e T.
For each B e (2Ö)0>1, we now choose T(n, B), J(n, B), by induction on

n<to, such that T(n,B)^X, J(n, B) e (2T1, and J(n, B)l<x. e T(n, B)
for all nonzero a<co,.

F(0, B)=X. J(0, B)=B.

Suppose T(n, B) and J(n, B) are defined. Define T(n+l, 5)={/|F(/)<=

J(n, B)} (i.e., define r(«+l,8) from J{n,B) as F was earlier defined

from B). By Lemma 4, F(«+1, 5) has an uncountable branch. The union

of such a branch is some element J(n+l, B) of (2a>)0>1.

Lemma 5. If B and B' are such that, for all n<co, J(n,B)\l equals

J(n, B')[l, then B equals B'.

Proof. Let B and B' be such functions. It suffices to prove, by in-

duction on nonzero ß^cox, that R(ß):J(n, B)\B=J{n, B')\ß for all n<co.

For ß=l, R(ß) is given. For nonzero limit ß, R(ß) follows easily from

i?(a) for all a</3. Suppose R(ß) holds for nonzero ß, to show R(ß+l).

Consider any n<co. Let/be J(n+l, B)[ß. By R(ß),f equals J(n+l, B')\ß.

Then F(f)^J(n,B) since fe T(n+l, B); F(f)<=J(n, B') since fe
T(n+l,B'). Since F(/) has domain ß+l, it follows that /(n, 5)^/3+1)=

F(/)=J(n,5')r(/?+l)-
By Lemma 5,  distinct B e (2a>)0>1 are assigned distinct sequences

(J(n,B)\l\n<(o). Thus, |(20,)0,'|^|((20,)1)'B|. This contradicts the assump-

tion that |2<0»|>\2a\. Theorem 2 is proved.

It follows from the proof of Theorem 2 that: if |2Í"|<|2Í"1|, then, for

some B, the corresponding T defined above is a dense subset of an co-

distributive complete Boolean algebra not having property Pai.
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