A COUNTABLY DISTRIBUTIVE COMPLETE BOOLEAN ALGEBRA NOT UNCOUNTABLY REPRESENTABLE

JOHN GREGORY1

ABSTRACT. It is proved from the Continuum Hypothesis that there exists an ω -distributive complete Boolean algebra which is not ω_1 -representable.

- Karp [1, Corollary to main theorem] shows that there is an ω -distributive non- $|2^{\omega}|$ -representable $|2^{\omega}|$ -complete Boolean algebra. Karp later pointed out that, for every cardinal $K \ge |2^{\omega}|$, there is an ω -distributive non- $|2^{\omega}|$ -representable K-complete Boolean algebra. The following strengthens the completeness requirement.
- Theorem 1. The Continuum Hypothesis implies the existence of an ω -distributive non- ω_1 -representable complete Boolean algebra.
- In [3, Definition 1.2], the property P_K was defined for cardinals K. We will prove the following theorem.
- THEOREM 2. If $|2^{\omega}| < |2^{\omega_1}|$, then there exists an ω -distributive complete Boolean algebra that does not have the property P_{ω_1} .

Theorem 1 is a consequence of Theorem 2, since the Continuum Hypothesis implies both $|2^{\omega}| < |2^{\omega_1}|$ and (by [3, Theorem 4.2]) the equivalence of ω_1 -representability with property P_{ω} .

Assuming the negation of Souslin's Hypothesis, Smith's [3, Theorem 3.4] implies our theorems. However, R. Jensen has shown that Souslin's Hypothesis is consistent with the Continuum Hypothesis; so Smith's result does not imply ours.

1. **Preliminaries.** Let ω be the first infinite cardinal; ω_1 is the first uncountable cardinal; x^y is the set of all functions from y into x; |x| is the cardinal of x (cardinals are initial ordinals); Dm(x) is the domain of function x; $x \mid y$ is the restriction of a function x to the domain $Dm(x) \cap y$. We assume the axiom of choice.

Received by the editors November 15, 1972 and, in revised form, February 7, 1973. AMS (MOS) subject classifications (1970). Primary 06A40; Secondary 04A30.

Key words and phrases. Complete Boolean algebra, ω -distributive Boolean algebra, ω_1 -representable Boolean algebra, Continuum Hypothesis.

¹ This research was partially supported by a National Science Foundation Grant of Carol Karp, NSF GP 34033.

[©] American Mathematical Society 1974

The Boolean algebraic definitions are essentially those of [2]. A Boolean algebra C is ordered by: $a \le b$ iff the infimum $a \land b = a$. C is K-complete if the infimum (or meet) $\bigwedge S$ exists for each set S of no more than K many elements of C. Then the supremum (or join) $\bigvee S$ exists for all such S. C is complete if the infimum of every set of elements exists. A K-complete Boolean algebra C is K-distributive iff

$$\bigwedge_{\alpha < K} \bigvee_{\beta < K} A(\alpha, \beta) \leqq \bigvee_{H \in K^K} \bigwedge_{\alpha < K} A(\alpha, H(\alpha))$$

for all functions A into C. A Boolean algebra is K-representable iff it is isomorphic to the quotient of a K-field of sets by a K-ideal. Smith defined the following distributive-like property P_K which implies K-representability.

DEFINITION. A Boolean algebra C has the property P_K iff: if A is a function from $K \times K$ into C and if $\bigwedge_{\alpha < K} \bigvee_{\beta < K} A(\alpha, \beta)$ exists and is not zero, then there is a function H from K into K such that, for all $\gamma < K$, either $\bigwedge_{\alpha < \gamma} A(\alpha, H(\alpha))$ does not exist or else is not zero.

A subset S of C is dense iff S does not contain the zero of C and, for all nonzero elements b of C, there exists $x \in S$ such that $x \le b$.

The following is well known and is related to "forcing".

A set S ordered by \leq satisfies

(1) for all
$$x \leq y$$
, there exists $z \leq x$ such that, for all w , not both $w \leq y$ and $w \leq z$

if and only if there exists an (algebraically unique) complete Boolean algebra C such that S is a dense subset of C and the ordering of C extends that of S. (See [2, Example 12(B)] and [2, §35].)

If S is dense in C and x, y, z range over S, then: $x \le hleft X$ iff, for all $b \in X$, $x \le b$; $x \le c$ complement of b iff, for all z, not both $z \le x$ and $z \le b$; $x \le hleft X$ iff, for all $y \le x$, there is $z \le y$ and $b \in X$ such that $z \le b$.

2. **Proof of Theorem 2.** Assume $\Omega = |2^{\omega}| < |2^{\omega_1}|$. Suppose there did not exist an ω -distributive complete Boolean algebra not having property P_{ω_1} . It will suffice to reach a contradiction. Let X be the set of all nonempty countable sequences f into 2^{ω} (i.e., of all functions f whose nonempty domain is a countable ordinal and whose range is a subset of 2^{ω}).

Define \mathscr{F} to be the set of all F such that: F is a function from a subset of X into X; if F(f) defined, then Dm(F(f))=Dm(f)+1; if F(f) defined, then so is $F(f \mid \alpha) = F(f) \mid (\alpha+1)$ whenever $0 < \alpha \le Dm(f)$.

There exists a Ω -sequence E that enumerates the set of all ordered pairs (f, t) such that $f \in X$ and countable $t \subseteq X$, each such pair occurring Ω times in the sequence E.

By induction on $\alpha \leq \Omega$, F_{α} will now be constructed such that $F_{\alpha} \in \mathcal{F}$, $|F_{\alpha}| \leq |\omega \cup \alpha|$, and F_{β} extends F_{α} whenever $\alpha < \beta \leq \Omega$.

For limit ordinal $\lambda \leq \Omega$, let F_{λ} be the union of all F_{α} , $\alpha < \lambda$. (In particular, F_0 is empty.)

Given $F = F_{\alpha}$, $\alpha < \Omega$, $G = F_{\alpha+1}$ is defined by cases as follows. In each case below, note that $G \in \mathcal{F}$, G extends F, and G has only countably more elements than F. (Cases 1, 2, 3 are for Lemmas 1(1), 1(2), 2 respectively.)

- Case 1. $E(\alpha)$ is some (f, 0) such that Dm(f)=2. Since $(2^{\omega})^1$ has cardinality greater than F_{α} , there is $h \in (2^{\omega})^1$ such that F(h) is not defined. Extend F to G by: G(h)=f; G(k)=F(k) whenever defined.
- Case 2. $E(\alpha)$ is some $(f, \{g\})$ such that f has a domain $\gamma+1$, g has a domain $\delta < \gamma$, and $F(g) = f \upharpoonright (\delta+1)$. Then there is $h \in (2^{\omega})^{\gamma}$ such that h extends g and $F(h \upharpoonright (\delta+1))$ is not defined. Then $F(h \upharpoonright \beta)$ is defined iff $0 < \beta \le \delta$; for such β , $h \upharpoonright \beta$ is $g \upharpoonright \beta$. Extend F to G by: $G(h \upharpoonright \beta) = f \upharpoonright (\beta+1)$ whenever $\delta < \beta \le \gamma$; G(k) = F(k) whenever defined.
- Case 3. $E(\alpha)$ is some (f, t) such that: f has a domain $\gamma + 1$; for every $k \in t$, $F(k) \subset f$ is defined; there are Ω many $h \in (2^{\omega})^{\gamma}$ such that h is a union of elements of t. Then there exists $h \in (2^{\omega})^{\gamma}$ such that h is a union of elements of t but F(h) is not defined. Extend F to G by: G(h) = f; G(k) = F(k) whenever defined.
 - Case 4. The first three cases do not hold. Let G be F.

This finishes the construction of F_{α} , $\alpha \leq \Omega$. From now on, let F be F_{Ω} . Given $B \in (2^{\omega})^{\omega_1}$, define T to be $\{f | F(f) \subset B\}$.

T will turn out to be a dense subset of a complete ω -distributive Boolean algebra. But first some facts about T will be proved.

- LEMMA 1. (1) T is nonempty. (2) If g is in both T and $(2^{\omega})^{\delta}$ and if $\delta < \gamma < \omega_1$, then g has at least two distinct extensions in $T \cap (2^{\omega})^{\gamma}$. (3) If $f \in T$ and nonzero $\beta \leq Dm(f)$, then $f \upharpoonright \beta \in T$.
- PROOF. (1) For some α , $E(\alpha)$ is $(B \mid 2, 0)$. By Case 1 of the construction of $F_{\alpha+1}$, there is h such that $F_{\alpha+1}(h) = B \mid 2$. Then $F(h) = B \mid 2$ and this h is in T.
- (2) Then for some $\beta < \Omega$, $F_{\beta}(g) = B \upharpoonright (\delta + 1)$ is defined. For Ω many $\alpha > \beta$, $E(\alpha)$ is $(B \upharpoonright (\gamma + 1), \{g\})$. For each such α , by Case 2 of the construction of $F_{\alpha+1}$, there is assigned $h \in (2^{\omega})^{\gamma}$ such that h extends g, $F_{\alpha+1}(h) = B \upharpoonright (\gamma + 1)$, and $F_{\alpha}(h)$ is not defined. Then h is in $T \cap (2^{\omega})^{\gamma}$ and h extends g. Since $F_{\alpha}(h)$ is not defined, h was not assigned to a smaller α ; thus, distinct such α 's give distinct h's.
- (3) $F(f) \subseteq B$. Thus F(f) is defined. Since $F \in \mathscr{F}$, $F(f \upharpoonright \beta) \subseteq F(f) \subseteq B$. Thus, $f \upharpoonright \beta \in T$.

LEMMA 2. If countable $t \subseteq T$ and there are Ω many $h \in (2^{\omega})^{\gamma}$ such that h is a union of elements of t, then there exists $h \in T \cap (2^{\omega})^{\gamma}$ such that h is a union of elements of t.

PROOF. For each $k \in t$, $F(k) \subseteq B$ and some $F_{\beta}(k)$, $\beta < \Omega$, is defined. Since Ω is not cofinal with ω , there exists $\beta < \Omega$ such that, for all $k \in t$, $F_{\beta}(k)$ is defined. For some $\alpha > \beta$, $E(\alpha)$ is $(B \upharpoonright (\gamma + 1), t)$. Then Case 3 of the definition of $F_{\alpha+1}$ gives $h \in (2^{\omega})^{\gamma}$ such that h is a union of elements of t and $F_{\alpha+1}(h) = B \upharpoonright (\gamma + 1)$. Then $F(h) \subseteq B$ and $h \in T$.

Order T by: $f \le g$ iff f extends g. Then T satisfies (1) of §1. So there is a (algebraically unique) complete Boolean algebra C such that T is a dense subset of C and the ordering of C extends that of T.

LEMMA 3. C is an ω -distributive Boolean algebra.

PROOF. Suppose that A is a function on $\omega \times K$ into C. By the definition of ω -distributivity and by the fact that T is dense in C, it suffices to show for every $f \in T$ that: if $f \leq \bigwedge_m \bigvee_{\alpha} A(m, \alpha)$, then there is $h \in T$ such that $h \leq f$ and, for all $m < \omega$, $h \leq A(m, \alpha)$ for some $H(m) = \alpha < K$.

Define $P(r) \in T$ for $r \in 2^m$ by the following induction on $m < \omega$. Let P(0) = f. Suppose $P(r) \le f$ defined for all $r \in 2^m$. Let $\beta(m)$ be the least upper bound of $\{Dm(P(r))|r \in 2^m\}$. Consider any $r \in 2^m$. Let u and v be the two extensions in 2^{m+1} of r. Since $P(r) \le f \le \bigvee_{\alpha} A(m, \alpha)$, there exists $g \in T$ such that $g \le P(r)$ and $g \le A(m, \alpha)$ for some α . By Lemma 1(2), there exist distinct extensions P(u) and P(v) of g such that they both have the same domain greater than $\beta(m)$.

Put $t = \{P(r) | r \in 2^m \text{ for some } m < \omega\}$. Let $\gamma = \bigcup_m \beta(m)$. By Lemma 2, there exists $h \in T \cap (2^\omega)^\gamma$ such that h is a union of some elements of t. Then $h \leq P(0) = f$. Consider any $m < \omega$. There is $r \in 2^{m+1}$ such that $P(r) \subseteq h$. There is $\alpha < K$ such that $h \leq P(r) \leq A(m, \alpha)$.

LEMMA 4. T has an uncountable chain.

PROOF. Define A on $\omega_1 \times 2$ into C by

$$A(\omega\beta + m, i) = \bigvee \{ f \in T \mid f(\beta)(m) = i \}, \quad \beta < \omega_1, m < \omega, i < 2.$$

By Lemma 1(2), for every $g \in T$ there is $f \leq g$ such that $\beta \in Dm(f)$ and hence $f \leq A(\omega\beta+m, f(\beta)(m))$. Thus since T is dense, it follows that each $\bigvee_i A(\omega\beta+m,i)$ is the identity of C. Since C is a complete ω -distributive Boolean algebra, it must have property P_{ω_1} (by our earlier supposition, which is used here only). By P_{ω_1} , there exists a function H on ω_1 into 2 such that, for all $\gamma < \omega_1$, the infimum $\bigwedge_{\beta < \gamma} A(\beta, H(\beta))$ is nonzero. Let $J = \{f \in X | f(\beta)(m) = H(\omega\beta+m) \text{ for all } \beta < Dm(f) \text{ and } m < \omega\}$. Then J is an uncountable chain of functions. It now suffices to prove $J \subseteq T$. Consider any $f \in J$. Let $\alpha = Dm(f)$ and $\gamma = \omega\alpha$. Since T is dense, there exists $g \in T$,

 $g \leq \bigwedge_{\beta < \gamma} A(\beta, H(\beta))$. Then $g(\beta)(m) = H(\omega \beta + m)$ for all $\beta < \alpha, m < \omega$; so $g \upharpoonright \alpha$ is f. By Lemma 1(3), $f \in T$.

For each $B \in (2^{\omega})^{\omega_1}$, we now choose T(n, B), J(n, B), by induction on $n < \omega$, such that $T(n, B) \subseteq X$, $J(n, B) \in (2^{\omega})^{\omega_1}$, and $J(n, B) \upharpoonright \alpha \in T(n, B)$ for all nonzero $\alpha < \omega_1$.

T(0, B) = X. J(0, B) = B.

Suppose T(n, B) and J(n, B) are defined. Define $T(n+1, B) = \{f | F(f) \subset J(n, B)\}$ (i.e., define T(n+1, B) from J(n, B) as T was earlier defined from B). By Lemma 4, T(n+1, B) has an uncountable branch. The union of such a branch is some element J(n+1, B) of $(2^{\omega})^{\omega_1}$.

LEMMA 5. If B and B' are such that, for all $n < \omega$, $J(n, B) \upharpoonright 1$ equals $J(n, B') \upharpoonright 1$, then B equals B'.

PROOF. Let B and B' be such functions. It suffices to prove, by induction on nonzero $\beta \leq \omega_1$, that $R(\beta):J(n,B) \upharpoonright B=J(n,B') \upharpoonright \beta$ for all $n < \omega$. For $\beta=1$, $R(\beta)$ is given. For nonzero limit β , $R(\beta)$ follows easily from $R(\alpha)$ for all $\alpha < \beta$. Suppose $R(\beta)$ holds for nonzero β , to show $R(\beta+1)$. Consider any $n < \omega$. Let f be $J(n+1,B) \upharpoonright \beta$. By $R(\beta)$, f equals $J(n+1,B') \upharpoonright \beta$. Then $F(f) \subset J(n,B)$ since $f \in T(n+1,B)$; $F(f) \subset J(n,B')$ since $f \in T(n+1,B')$. Since F(f) has domain $\beta+1$, it follows that $J(n,B) \upharpoonright (\beta+1) = F(f) = J(n,B') \upharpoonright (\beta+1)$.

By Lemma 5, distinct $B \in (2^{\omega})^{\omega_1}$ are assigned distinct sequences $\langle J(n, B) \upharpoonright 1 | n < \omega \rangle$. Thus, $|(2^{\omega})^{\omega_1}| \le |((2^{\omega})^1)^{\omega}|$. This contradicts the assumption that $|2^{\omega_1}| > |2^{\omega}|$. Theorem 2 is proved.

It follows from the proof of Theorem 2 that: if $|2^{\omega}| < |2^{\omega_1}|$, then, for some B, the corresponding T defined above is a dense subset of an ω -distributive complete Boolean algebra not having property P_{ω_1} .

REFERENCES

- 1. Carol R. Karp, Nonaxiomatizability results for infinitary systems, J. Symbolic Logic 32 (1967), 367-384. MR 36 #2484.
- 2. Roman Sikorski, *Boolean algebras*, Ergebnisse der Math. und ihrer Grenzgebiete, Neue Folge, Band 25, Academic Press, Springer-Verlag, Berlin and New York, 1964. MR 31 #2178.
- 3. E. C. Smith, A distributivity condition for Boolean algebras, Ann. of Math. (2) 64 (1956), 551-561. MR 19, 115.

4517 JONWALL COURT, COLUMBIA, SOUTH CAROLINA 29206

Current address: Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226