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A COUNTABLY DISTRIBUTIVE COMPLETE BOOLEAN
ALGEBRA NOT UNCOUNTABLY REPRESENTABLE

JOHN GREGORY!

ABSTRACT. It is proved from the Continuum Hypothesis that
there exists an w-distributive complete Boolean algebra which is
not w,-representable.

Karp [1, Corollary to main theorem] shows that there is an -
distributive non-|2¢|-representable |2°|-complete Boolean algebra. Karp
later pointed out that, for every cardinal K2=|2“|, there is an w-distributive
non-|2°|-representable K-complete Boolean algebra. The following
strengthens the completeness requirement.

THEOREM 1. The Continuum Hypothesis implies the existence of an
w-distributive non-w,-representable complete Boolean algebra.

In [3, Definition 1.2], the property Px was defined for cardinals K. We
will prove the following theorem.

THEOREM 2. If |2°|<|2%1|, then there exists an w-distributive complete
Boolean algebra that does not have the property P, .

Theorem 1 is a consequence of Theorem 2, since the Continuum
Hypothesis implies both |2°|<|2“1| and (by [3, Theorem 4.2]) the equiv-
alence of w,-representability with property P, .

Assuming the negation of Souslin’s Hypothesis, Smith’s [3, Theorem
3.4] implies our theorems. However, R. Jensen has shown that Souslin’s
Hypothesis is consistent with the Continuum Hypothesis; so Smith’s
result does not imply ours.

1. Preliminaries. Let w be the first infinite cardinal; w, is the first
uncountable cardinal; x¥ is the set of all functions from y into x; |x| is the
cardinal of x (cardinals are initial ordinals); Dm(x) is the domain of
function x; x['y is the restriction of a function x to the domain Dm(x) Ny.
We assume the axiom of choice.
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The Boolean algebraic definitions are essentially those of [2]. A Boolean
algebra C is ordered by: a=<b iff the infimum aAb=a. C is K-complete if
the infimum (or meet) /\ S exists for each set S of no more than K many
elements of C. Then the supremum (or join) V S exists for all such S.
C is complete if the infimum of every set of elements exists. A K-complete
Boolean algebra C is K-distributive iff

ANV A, = V, N A, H)
a<K <K HeK™ a< K

for all functions 4 into C. A Boolean algebra is K-representable iff

it is isomorphic to the quotient of a K-field of sets by a K-ideal. Smith

defined the following distributive-like property Px which implies K-

representability.

DEFINITION. A Boolean algebra C has the property Px iff:if 4 is a
function from K x K into C and if A, x Vs_x A(a, P) exists and is not
zero, then there is a function H from X into K such that, for all y<X,
either A, _, A(«, H(«)) does not exist or else is not zero.

A subset S of C is dense iff S does not contain the zero of C and, for all
nonzero elements b of C, there exists x € S such that x=<b.

The following is well known and is related to “forcing™.

A set S ordered by = satisfies

for all x £ y, there exists z < x such that,
for all w, not both w <y and w =z

(M

if and only if there exists an (algebraically unique) complete Boolean
algebra C such that S is a dense subset of C and the ordering of C extends
that of S. (See [2, Example 12(B)] and [2, §35].)

If S is dense in C and x, y, z range over S, then: x<A X iff, for all
be X, x=b; x=complement of b iff, for all z, not both z=<x and z=b;
x=V X iff, for all y<x, there is z<y and b € X such that z=<b.

2. Proof of Theorem 2. Assume Q=|2%<|2*!|. Suppose there did
not exist an w-distributive complete Boolean algebra not having property
P, . It will suffice to reach a contradiction. Let X be the set of all nonempty
countable sequences f into 2“ (i.e., of all functions f whose nonempty
domain is a countable ordinal and whose range is a subset of 2%).

Define & to be the set of all F such that: F is a function from a subset
of X into X; if F(f) defined, then Dm(F(f))=Dm(f)+1; if F(f) defined,
then so is F(fla)= F(f)](x+1) whenever 0 <a=Dm(f).

There exists a Q-sequence E that enumerates the set of all ordered pairs
(f, t) such that fe X and countable 1= X, each such pair occurring Q
times in the sequence E.
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By induction on « =Q, F, will now be constructed such that F, € &,
|FS|w Ua|, and F; extends F, whenever a <S=Q.

For limit ordinal 1=, let F, be the union of all F,, « <A. (In particular,
Fy is empty.)

Given F=F,, «<Q, G=F,,, is defined by cases as follows. In each
case below, note that G € &, G extends F, and G has only countably more
elements than F. (Cases 1, 2, 3 are for Lemmas 1(1), 1(2), 2 respectively.)

Case 1. E(«) is some (f, 0) such that Dm(f)=2. Since (2”)! has car-
dinality greater than F,, there is h € (2”)! such that F(A) is not defined.
Extend F to G by: G(h)=f; G(k)=F(k) whenever defined.

Case 2. E(x) is some (f, {g}) such that f has a domain y+1, g hasa
domain <y, and F(g)=fT(6+1). Then there is 4 € (2°)" such that A
extends g and F(h}(6+1)) is not defined. Then F(h[B) is defined iff
0<p=4; for such B, hB is g[f. Extend F to G by: G(h[B)=fT(+1)
whenever 6 <B=y; G(k)=F(k) whenever defined.

Case 3. E(x) is some (f, t) such that: f has a domain y+1; for every
k €1, F(k)< fis defined; there are Q many /4 € (2°)" such that 4 is a union
of elements of z. Then there exists 4 € (2”)’ such that 4 is a union of
elements of ¢ but F(h) is not defined. Extend Fto G by: G(h)=f; G(k)=F(k)
whenever defined.

Case 4. The first three cases do not hold. Let G be F.

This finishes the construction of F,, «<Q. From now on, let F be Fj,.

Given B € (2°), define T to be {f|F(f)<B}.

T will turn out to be a dense subset of a complete w-distributive Boolean
algebra. But first some facts about T will be proved.

LemMA 1. (1) T is nonempty. (2) If g is in both T and (2°)* and if
0<y<w,, then g has at least two distinct extensionsin TN(2°Y'. 3) If fe T
and nonzero f=Dm(f), then f|f € T.

Proor. (1) For some «, E(x) is (B[2, 0). By Case 1 of the construction
of F,,, there is h such that F, ;(h)=B[2. Then F(h)=B|2 and this A is in
T.

(2) Then for some $<Q, Fyg(g)=B[(d+1) is defined. For Q many
a>B, E(x) is (B](y+1), {g}). For each such «, by Case 2 of the con-
struction of F,,,, there is assigned k€ (2°)" such that 4 extends g,
F,..(h)=B[(y+1), and F,(h) is not defined. Then 4 is in TN(2")" and A
extends g. Since F,(h) is not defined, /7 was not assigned to a smaller «;
thus, distinct such a’s give distinct A’s.

(3) F(f)< B. Thus F(f) is defined. Since F € &, F(f|f)< F(f)< B. Thus,
fIBET.
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LeMMA 2. If countable t<T and there are Q many h € (2°)' such that
h is a union of elements of t, then there exists h € TN\(2%)" such that h is a
union of elements of t.

Proor. For each k €t, F(k)<B and some Fg(k), f<Q, is defined.
Since Q is not cofinal with w, there exists 8<Q such that, for all k €¢,
Fy(k) is defined. For some a>f, E(«) is (B[ (y+1), t). Then Case 3 of the
definition of F,,, gives & € (2)" such that 4 is a union of elements of 7 and
Foa(h)=B[(y+1). Then F(h)<Band heT.

Order T by: f<g iff f extends g. Then T satisfies (1) of §1. So there is a
(algebraically unique) complete Boolean algebra C such that T is a dense
subset of C and the ordering of C extends that of T.

LemMMA 3. C is an w-distributive Boolean algebra.

ProOF. Suppose that 4 is a function on w X K into C. By the definition
of w-distributivity and by the fact that T is dense in C, it suffices to show
for every fe T that: if fSA,, V, A(m, «), then there is € T such that
h=fand, for all m<w, A= A(m, «) for some H(m)=a<K.

Define P(r)e T for r € 2™ by the following induction on m<w. Let
P(0)=f. Suppose P(r)=< f defined for all r €2™. Let f(m) be the least
upper bound of {Dm(P(r))lr €2™}. Consider any r € 2™. Let u and v be
the two extensions in 2™*! of r. Since P(r)< f§V, A(m, o), there exists
g € T such that g=P(r) and g=A(m, a) for some «. By Lemma 1(2),
there exist distinct extensions P(u) and P(v) of g such that they both have
the same domain greater than S(m).

Put r={P(r)|r € 2™ for some m<w}. Let y=J,, f(m). By Lemma 2,
there exists 2 € TN(2°)" such that A is a union of some elements of .
Then A< P(0)=f. Consider any m<w. There is r € 2™+ such that P(r)<h.
There is « <K such that A=<P(r)=<A(m, «).

LeEMMA 4. T has an uncountable chain.

Proor. Define 4 on w, X2 into C by

A+ mi)=V{feT|fBm =i}, p<o,m<w,i<?2.
By Lemma 1(2), for every g € T there is f<g such that § € Dm(f) and
hence f<A(wpf+m, f(B)(m)). Thus since T is dense, it follows that each
V; A(wf+m, i) is the identity of C. Since C is a complete w-distributive
Boolean algebra, it must have property P,, (by our earlier supposition,
which is used here only). By P, , there exists a function H on w, into 2
such that, for all y<w,, the infimum /\‘,<7 A(B, H(B)) is nonzero. Let
J={fe X|f(B)(m)=H(wB+m) for all B<Dm(f) and m<w}. Then J is an
uncountable chain of functions. It now suffices to prove J< T. Consider
any feJ. Let a=Dm(f) and y=wa. Since T is dense, there exists g € T,
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g=/N;, A(B, H(B)). Then g(B)(m)=H(wB+m) for all f<a, m<w; so
gl is f. By Lemma 1(3), fe T.

For each B € (2°)*1, we now choose T(n, B), J(n, B), by induction on
n<w, such that T(n, B)= X, J(n, B) € 2°)*1, and J(n, B« € T(n, B)
for all nonzero a<w;.

T(0, B)=X. J(0, B)=B.

Suppose T(n, B) and J(n, B) are defined. Define T(n+1, B)={f|F(f)<
J(n, B)} (i.e., define T(n+1, B) from J(n, B) as T was earlier defined
from B). By Lemma 4, T(n+ 1, B) has an uncountable branch. The union
of such a branch is some element J(n+1, B) of (22)“:.

LemMma 5. If B and B’ are such that, for all n<w, J(n, B)1 equals
J(n, B')'1, then B equals B'.

ProOF. Let B and B’ be such functions. It suffices to prove, by in-
duction on nonzero = w,, that R():J(n, B)]B=J(n, B')f for all n<w.
For =1, R(p) is given. For nonzero limit B, R(B) follows easily from
R(«) for all a<f. Suppose R(f) holds for nonzero f, to show R(8+1).
Consider any n<w. Let f be J(n+1, B)[ 8. By R(B), f equals J(n+1, B')[B.
Then F(f)<J(n,B) since feT(n+1, B); F(f)<J(n, B’) since fe
T(n+1, B'). Since F(f) has domain $+1, it follows that J(n, B)[(8+1)=
F(f)=J(n, B)(B+1).

By Lemma 5, distinct B e (2)** are assigned distinct sequences
J(n, B)f1|n<w>. Thus, |(2°)**|=|((2®)")?|. This contradicts the assump-
tion that |2°1|>|2%|. Theorem 2 is proved.

It follows from the proof of Theorem 2 that: if |2°| <|2“?|, then, for
some B, the corresponding T defined above is a dense subset of an w-
distributive complete Boolean algebra not having property P,, .
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