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Abstract. We find the maximum number of orthogonal skew-

symmetric anticommuting integer matrices of order n for each

natural number n and relate this to finding free direct summaries of

certain generic projective modules.

While studying composition of quadratic forms, Hurwitz [4] and Radon

[6] considered families of orthogonal matrices {Au • • • ,AS) satisfying

the conditions

(1) At = -A\, i = 1, • • •, s

(2) A.A^-A.A,,       i*j.

Definition. (1) A family of orthogonal matrices satisfying (1) and

(2) above will be called a Hurwitz-Radon (H-R) family.

If « is a positive integer and n=2"b, b odd, then we write a=4c+d

where 0^á<4. If we denote by p(n) the number Sc+2d the main theorem

of Radon states :

Theorem A [6]. (1) Any H-R family of real matrices of order n has

fewer than p(n) members.

(2) There is an H-R family of real matrices of order n having exactly

p(n)—l members.

In the first section we prove an analogous theorem for integer matrices

and in §11 we consider some applications to the study of projective mod-

ules.

We are indebted to R. Gabel for having furnished us with a copy of

his Brandeis thesis. The ideas studied here were inspired by that work and

represent a simplification and extension of one part of that thesis. Gabel
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has independently extended this part of his thesis. His presentation of

these results will appear in a separate paper in the Journal of Algebra.

I. Hurwitz-Radon theorem for integer matrices. In order to extend

Theorem A to integer matrices it is sufficient to show that for every integer

n there is an H-R family of integer matrices of order n having exactly

p(n)—l members.

If

A=\ o 11     pro n  and        ri    on
L-i oj Li oj Lo -d

then

(a) {A} is an H-R family of p(2)—l integer matrices of order 2;

(b) {A®I2,P®A, Q®A) is an H-R family of />(4)— 1 integer matrices

of order 4, and

(c) {I2®A®I2, I2®P®A, Q®Q®A, P®Q®A, A®P®Q, A®P®P,
A®Q®I2) is an H-R family of p(8)— 1 integer matrices of order 8.

Theorem 1. There is an H-R family of integer matrices of order n

having p(n)—l members.

Proof. Suppose that {Mx, • • ■, Ms} is an H-R family of integer

matrices of order n, then

(1) {A®In}V{Q®Mi\i=l, ■ ■ • ,s) is an H-R family of 5+1 integer

matrices of order 2n.

(2) If {/_!, • • • , Lm} is an H-R family of integer matrices of order k,

{P®Ik®Mi\l<:i<:s} V{Q®Lj®In\l<:j ^m}KJ{A® 1^}

is an H-R family of s+m+1 integer matrices of order 2nk.

That the matrices are orthogonal and skew-symmetric follows from the

fact that (A®B)*=At®Bt. The members of these families anticommute

because the product of any two distinct members is skew-symmetric.

To prove the theorem it is enough to note that a, b, and c take care of

the cases n=2, 4, 8, then (1) gives n=16 and (2) gives the transition from

n to 16« (with &=8, m=l). The transition from «=2° to n=2"b, b odd,

is given by ® Ib.

Suppose D is a commutative domain in which 2^0. Since the H-R

families constructed above have as entries only 0, 1 and —1, they exist

as H-R families over D. Therefore p(n)—l gives a lower bound for the

maximum number of members in any H-R family of matrices over D of

order n.

II. Applications to the study of projective modules. In this section

all rings considered will be commutative with identity and modules will

be unitary and finitely generated.
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Definition. (2) An /{-module P is called stably free if there are integers

m, n such that F©Fm~F". In such an instance, we say that P is stably

free of type (m, n).

We first note that the "type" of a stably free module is in no way

uniquely determined by the module. Also note that a stably free F-module

of type (m, n) is nothing more than a projective F-module which can be

realized as the kernel of an epimorphism from Rn to Rm.

The following three definitions and the proposition following them may

all be found in Gabel [3] where these notions were first formulated.

Definition. (3) A stably free F-module P is called orthogonal if

F~ker x where x:Rn—>Rm is an epimorphism and xxf=\Rm. (We are

freely considering homomorphisms of free modules as matrices and then

'"" denotes transpose.)

Note that if we let L be R with the quadratic form xy-+x2 then a* embeds

Rm into Ln as a nonsingular submodule whose orthogonal complement is

isomorphic to P. The quadratic structure on F is the one induced by the

quadratic structure on L*. (For details see Bass [2].) On the other hand

if F is a quadratic module such thatF©Lm~Ln (where the sum is orthog-

onal and the isomorphism preserves the quadratic forms) then F is an

orthogonal projective module. These remarks then constitute an alter-

native definition of orthogonal projective modules which we shall have

occasion to use.

Definition. (4) Let F be a ring; m, n integers where m<n, and

{Xjj}, 1 ̂ i^m, 1 ̂ j^n, a doubly indexed set of indeterminates. We define

the F-algebra

Rm.n = °[-^ii> ' ■ ' j Xtj, • • • , Xmn\IIm n(R)

where Im.n(R) is the ideal of R[Xn, ■ ■ ■ , Yi3, • • ■ , Xmn] generated by the

m2 elements of the m x m matrix [A^HY,,]'—(the m x m identity matrix).

(5) We define x0m,n(R):(R°m,ny^(Rom.n)™ by the matrix [Xti] (the "~"

denotes the canonical images of the Y„ in Fm,„) and set P°m,„(R)=

ker x°m.n(R).

The following proposition indicates the significance of these definitions.

Proposition 1. (1) x°m,n(R) is an epimorphism and P„,n(R) is an or-

thogonal stably free F„ „-module of type (m, n).

(2) If R-*-S is a ring homomorphism then there is a canonical R-algebra

map R°m.n-^S°m.nsuch thatP°m.„(R) ®s^n S°m.n~P°m¡n(S)asS°m.n-modules.

(3) If S is any R-algebra and P is a stably free orthogonal S-module of

type (m, n) then there is a canonical R-algebra map Rm,n—-S such that

Pm.n(R) ®R°m „ S~P as S-modules.
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Example.   Let R denote the real number field, then

Rln = R[XX, ■ ■ ■ , Xn]j(f *ï - l)

and

P°x,n (R) = ker a,

where z=[Xx, ■ ■ ■ , Xn]:(R¡in)n^-Rx.n. Let ^(S""1) denote the ring

of continuous real-valued functions on Sn_1. We may consider /??.„<=

^(S"-1) and then via the inclusion map we have Px,n(R) ®R?n <tf(Sn-1)=

P, which may be identified with the module of cross sections of the tangent

bundle to Sn~l [8].

Remarks. (1) If we let Z denote the rational integers then if R is any

ring it is a Z-algebra and there is a ring homomorphism Z—-R. By part

(3) of Proposition 1 any orthogonal projective ^-module can be obtained

from a ?t,»(2), for appropriate m, n, by a base change. This justifies

our calling P°m,n(Z) the generic, orthogonal, stably free projective of type

(m, n).

(2) If we consider only the family of rings which are A^-algebras for

some commutative ring K, then the modules P°mn(K) are "generic" for

the orthogonal projectives of type (m, n) over rings in this family. We

will thus abusively refer to all the modules P°m,n{R), for any ring R, as

generic.

(3) If R is any commutative ring and Z—-R a ring homomorphism then

by part (2) of Proposition 1 we have P°m.n(Z) ®2».. R0m.n^P°m.n(R).

So if Pm,n(R) is not free for any ring R then P°m-n(Z) is not free. On the

other hand if F™,n(Z) has a free summand of rank r then so does P°m.n(R)

for every commutative ring R.

The next proposition gives us a way of relating various generic projec-

tives.

Proposition 2. There is a ring homomorphism Rl,+X.n+X-+Rm.n such

that

Pl+x.n+i(R) 0®    R°m.B-F°m.B(R).
■Rm+l.n+1

Proof. We send R-^-R by the identity map and Xtf-*-Xti for l^i^m,

l<j£n. We send A'm+1,n+1-*l and Xm+x.k->0 for l^k<n and XUn+i-+0

for 1 </^m. This gives a map R[XTS]-+R[XUV] for 1 ̂ r^m+l, 1 ̂ s^n+l,

15ÍH5J/«, l^v^n which takes /Si+i.„+i(Ä) into Im.n(R) and so defines a

map <f>:R<L+i.n+i->'Rm.n- The proof now follows exactly as in Raynaud

[7, Proposition 2.4].
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Corollary. If R=R or Z then P°m¡n(R) is not free except possibly if

n—m=\, 3, 7.

Proof.    By repeated use of Proposition 1 we have

Pm.n(R)   <8>   Rl.n-m+l — ^l.n-m+lW-

"m.n

So F„,„(F) can be free only when F?,„_m+1(F) is free. It is known [8]

that P\,n^m+i(R) is free precisely when n—m+l=2, 4, or 8. Thus,

Pi.n-m+i(Z) can be free only if n—m+1 =2, 4, 8.

Remarks. (1) If n—m=\ then Fm,„(F) is free for any ring R since

then it is a stably free projective F„,n-module of rank one.

(2) We shall show that P\A(Z) and Pl.B(Z) are free, (Corollary 1 to

Theorem 3) but if m>l we have no results about the freeness of P°mn(Z)

for n—/m=3, 7. Some results of James [5] seem to be relevant here.

Also, the referee has kindly pointed out that the paper of Raynaud cited

above can also be applied here. In particular he states that R°m,n represents

the scheme SOJSOn_m. The relation between sections and summands

of ?!,„(/?) then applies and Raynaud's results on the nonexistence of

sections for S02n+1->-SO2n+i/'S02n-i S've resu'ts on p°m.n(R)> at least if

\ and y¡— 1 g F. (The SOn needed here is the one for the quadratic form

X\+-\-X2„, not the split SOn.)

(3) If C denotes the field of complex numbers, then F? „(C) is free

V« [8].
(4) It is an easy exercise to show that if R has characteristic =2 then

F?.„(F.) is free Vn.

If we cannot have freeness for a generic orthogonal projective we may

then ask about free summands in general.

Definition. If M is an F-module let p(M) e Z be the supremum of

the ranks of the free summands of M.

By Proposition 1 we have p(PmB(Z))_p(F™.n(F)) and by Proposition 2

p(P°m.n(R))^p(Pi.n-m+i(R)) for any commutative ring. We shall find

p(Plfk(Z)) for every integer k. This will generalize the results of [3] in

this direction.

If we let r(rn) denote the ^Ä(S")-module of cross sections of the tangent

bundle t" of S", then we have noted that this module is an orthogonal pro-

jective of type (1, n+l). Thus by Proposition 1, part (3), p(P\ „+i(Z))_

p(r(r»)).

Theorem 2 [1].   p(r(rn))=P(n+\)-l.

Proof. This is nothing more than a restatement of Adams' celebrated

theorem solving the vector field problem for spheres.
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We thus have p(P\ n(Z))_p(«)— 1. The next theorem will allow us to

change this inequality into equality.

Theorem 3. Let R be a commutative ring in which 2 is not a zero

divisor. Let P®L~Ln (where L is as in the remarks following Definition 3).

IfAu • ' • ,A,are an H-R family ofnxn matrices then /»(F)_j.

Proof. We shall consider the isomorphism above as an identification,

then the summand L on the left has the form aR where aeLn and F=(aR)x

in L". Since Ait — ,A, are an H-R family of nxn matrices they are, in

particular, invertible. Thus since a e Lnisunimodular, soarea^j, aA2, • • •,

aAs. Furthermore a, aA1, • ■ ■ , aAs are mutually orthogonal since 2 is

not a zero divisor in R and the matrices Au • • •, A, are an H-R family.

Thus aAu ■ • ■ ,aAse(aR)L=P and hence P=(aA1)®- • -®(aAs)®Q.

Thus p(F)_5 as was to be shown.

(Note. We would like to thank the referee for his proof of Theorem 3

which is much more efficient than our original proof.)

Corollary.   P(Pl,n(Z))=P(n)-\.

Proof. We have already remarked that we only needed to show

p(F?,„(Z))_p(/i)— 1 and the corollary now follows immediately from

Theorems 1 and 3.
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