PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 42, Number 1, January 1974

A THEOREM OF HURWITZ AND RADON AND
ORTHOGONAL PROJECTIVE MODULES!

A. V. GERAMITA AND N. J. PULLMAN

ABSTRACT. We find the maximum number of orthogonal skew-
symmetric anticommuting integer matrices of order »n for each
natural number » and relate this to finding free direct summands of
certain generic projective modules.

While studying composition of quadratic forms, Hurwitz [4] and Radon
[6] considered families of orthogonal matrices {4,,- -, 4} satisfying
the conditions

(¢Y) A= —A, i=1---,s
2 AA; = —AA, 5],

DEerINITION. (1) A family of orthogonal matrices satisfying (1) and
(2) above will be called a Hurwitz-Radon (H-R) family.

If n is a positive integer and n=2°, b odd, then we write a=4c+d
where 0=d<4. If we denote by p(n) the number 8c+2¢ the main theorem
of Radon states:

THEOREM A [6]. (1) Any H-R family of real matrices of order n has
fewer than p(n) members.

(2) There is an H-R family of real matrices of order n having exactly
p(n)—1 members. "

In the first section we prove an analogous theorem for integer matrices
and in §II we consider some applications to the study of projective mod-
ules.

We are indebted to R. Gabel for having furnished us with a copy of
his Brandeis thesis. The ideas studied here were inspired by that work and
represent a simplification and extension of one part of that thesis. Gabel
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has independently extended this part of his thesis. His presentation of
these results will appear in a separate paper in the Journal of Algebra.

I. Hurwitz-Radon theorem for integer matrices. In order to extend
Theorem A to integer matrices it is sufficient to show that for every integer
n there is an H-R family of integer matrices of order n having exactly

p(n)—1 members.

If

[0 e[ enlt
-1 0 10 0 —1

then

(a) {4} is an H-R family of p(2)—1 integer matrices of order 2;

(b) {AQL,, PRA, Q®A} is an H-R family of p(4)—1 integer matrices
of order 4, and

() {L,RARIL,, LLEPRA, Q®QRA, PRQ®A, AQPRQ, ARPQP,
ARQ®IL} is an H-R family of p(8)—1 integer matrices of order 8.

THEOREM 1. There is an H-R family of integer matrices of order n
having p(n)—1 members.

PrOOF. Suppose that {M;,---, M} is an H-R family of integer
matrices of order n, then

(1) {ARL}VU{Q®M,|i=1,---,s} is an H-R family of s+1 integer
matrices of order 2n.

@) If{L,,---,L,} is an H-R family of integer matrices of order «,

{POLOM|1SiSs}U{QRL,;®L,|1Zj=m}U{AQ1,}
is an H-R family of s+m+1 integer matrices of order 2nk.

That the matrices are orthogonal and skew-symmetric follows from the
fact that (A®B)!=A'®B'. The members of these families anticommute
because the product of any two distinct members is skew-symmetric.

To prove the theorem it is enough to note that a, b, and c take care of
the cases n=2, 4, 8, then (1) gives n=16 and (2) gives the transition from
n to 16n (with k=8, m=7). The transition from n=2° to n=2°%, b odd,
is given by ® I,.

Suppose D is a commutative domain in which 250. Since the H-R
families constructed above have as entries only 0, 1 and —1, they exist
as H-R families over D. Therefore p(n)—1 gives a lower bound for the
maximum number of members in any H-R family of matrices over D of
order n.

II. Applications to the study of projective modules. In this section
all rings considered will be commutative with identity and modules will
be unitary and finitely generated.
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DEFINITION.  (2) An R-module P is called stably free if there are integers
m, n such that POR™~R". In such an instance, we say that P is stably
free of type (m, n).

We first note that the “type” of a stably free module is in no way
uniquely determined by the module. Also note that a stably free R-module
of type (m, n) is nothing more than a projective R-module which can be
realized as the kernel of an epimorphism from R* to R™.

The following three definitions and the proposition following them may
all be found in Gabel [3] where these notions were first formulated.

DEFINITION.  (3) A stably free R-module P is called orthogonal if
P=~ker « where a:R"—R™ is an epimorphism and aa‘=1gs. (We are
freely considering homomorphisms of free modules as matrices and then
“” denotes transpose.)

Note that if we let L be R with the quadratic form x+—x? then « embeds
Rm™ into L™ as a nonsingular submodule whose orthogonal complement is
isomorphic to P. The quadratic structure on P is the one induced by the
quadratic structure on L. (For details see Bass [2].) On the other hand
if P is a quadratic module such that P@Lm~L" (where the sum is orthog-
onal and the isomorphism preserves the quadratic forms) then P is an
orthogonal projective module. These remarks then constitute an alter-
native definition of orthogonal projective modules which we shall have
occasion to use.

DEFINITION. (4) Let R be a ring; m, n integers where m=n, and
{X;;}, 1=2i=m, 1< j<n, a doubly indexed set of indeterminates. We define
the R-algebra

R?n.n = R[Xy, -, Xij» Y Xm.n]/I‘r)n.n(R)

where I3, ,.(R) is the ideal of R[Xy;, -, X;;, * * * , Xom.] generated by the
m? elements of the m X m matrix [X;;][X;;]*—(the m X m identity matrix).
(5) We define a3, .(R): (RS, .)"—(RS,..)™ by the matrix [X,;] (the <™~
denotes the canonical images of the X;; in R, ,) and set P% .(R)=
ker oY .(R).
The following proposition indicates the significance of these definitions.

PROPOSITION 1. (1) a% .(R) is an epimorphism and P, ,(R) is an or-
thogonal stably free RS, .-module of type (m, n).

(2) If R—S is a ring homomorphism then there is a canonical R-algebra
map Ry, ,—Sm. o such that P, ,(R) QRS | Stm..~2P% +(S)as Sy, .-modules.

(3) If S is any R-algebra and P is a stably free orthogonal S-module of
type (m, n) then there is a canonical R-algebra map R, ,.—S such that
PL +(R) ®r°, , S~P as S-modules.
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ExAMPLE. Let R denote the real number field, then

R, =RX, X ]/(gx - 1)

and
P}, (R) = ker a,

where a=[X;, -, X,]: (R} .)"—>R] .. Let €x(S™") denote the ring
of continuous real-valued functions on S™1. We may consider R? ,<

% (S™?) and then via the inclusion map we have P{ ,(R) ® R, ?(S"‘l)—
P, which may be identified with the module of cross sections of the tangent
bundle to S™* [8].

ReMARks. (1) If we let Z denote the rational integers then if R is any
ring it is a Z-algebra and there is a ring homomorphism Z—R. By part
(3) of Proposition 1 any orthogonal projective R-module can be obtained
from a PY, .(Z), for appropriate m, n, by a base change. This justifies
our calling PY, .(Z) the generic, orthogonal, stably free projective of type
(m, n).

(2) If we consider only the family of rings which are K-algebras for
some commutative ring K, then the modules P), ,(K) are *“generic” for
the orthogonal projectives of type (m, n) over rings in this family. We
will thus abusively refer to all the modules P, .(R), for any ring R, as
generic.

(3) If R is any commutative ring and Z—R a ring homomorphism then
by part (2) of Proposition 1 we have P}, ,,(Z) ®2z°  Rm, . a~P% .(R).
So if P% .(R) is not free for any ring R then P, ,(Z) i is not free. On the
other hand if PS, ,.(Z) has a free summand of rank r then so does P?, ,.(R)
for every commutative ring R.

The next proposition gives us a way of relating various generic projec-
tives.

PROPOSITION 2. There is a ring homomorphism Ry,.y.n,1—R% . such

that
Prian(R)  ® RG> Py (R).
+1,n+1

ProoF. We send R—R by the identity map and X;,—X; for 1<i<m,
1=j=<n. We send X,,,; ,.,—>1 and X,,,,;—0 for 1=k=n and X, ,,i—0
for 1=I=<m. This gives a map R[X,]J—>R[X ] for ISr=m+1,1<s=<n+l,
l<u<m 1<v=<n which takes I°,M,1 ,,+1(R) into I3 .(R) and so defines a
map ¢:Ro..;. ,,+1—>R° The proof now follows exactly as in Raynaud
[7, Proposition 2.4].
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COROLLARY. If R=R or Z then P%, .(R) is not free except possibly if
n—m=1, 3, 7.

PROOF. By repeated use of Proposition 1 we have

P?n.n(R) ® Ri’.n—mé-l = Pl(.).n—m+l(R)-

0
Rm.n

So P, .(R) can be free only when P} ,_,...(R) is free. It is known [8]
that P}, n.1(R) is free precisely when n—m+1=2, 4, or 8. Thus,
PY ._m:1(Z) can be free only if n—m+1=2, 4, 8.

ReMARkS. (1) If n—m=1 then P, ,(R) is free for any ring R since
then it is a stably free projective R, ,-module of rank one.

(2) We shall show that P? ,(Z) and P} ¢(Z) are free, (Corollary 1 to
Theorem 3) but if m>1 we have no results about the freeness of P%, ,(Z)
for n—m=3, 7. Some results of James {5] seem to be relevant here.
Also, the referee has kindly pointed out that the paper of Raynaud cited
above can also be applied here. In particular he states that R}, , represents
the scheme SO,/SO,_,.. The relation between sections and summands
of P%, .(R) then applies and Raynaud’s results on the nonexistence of
sections for SO,,,,—>S0,,.1/S0,,_, give results on P, .(R), at least if
3 and \/—1 € R. (The SO, needed here is the one for the quadratic form
X3+ -+ X3, not the split SO,.)

(3) If C denotes the field of complex numbers, then P} (C) is free
Vn [8].

(4) It is an easy exercise to show that if R has characteristic =2 then
P} ,.(R) is free Vn.

If we cannot have freeness for a generic orthogonal projective we may
then ask about free summands in general.

DEerINITION.  If M is an R-module let p(M) € Z be the supremum of
the ranks of the free summands of M.

By Proposition 1 we have p(P), .(Z)) < p(P%..(R)) and by Proposition 2
P(Po.n(R)=p(P} »_m1(R)) for any commutative ring. We shall find
p(P3 (2)) for every integer k. This will generalize the results of [3] in
this direction.

If we let I'(7™) denote the € (S™)-module of cross sections of the tangent
bundle 7" of S”, then we have noted that this module is an orthogonal pro-
jective of type (1, n+1). Thus by Proposition 1, part (3), p(PY . 1(2)=
p(T'(™)).

THEOREM 2 [1]. p(I'(z"))=p(n+1)—1.

Proor. This is nothing more than a restatement of Adams’ celebrated
theorem solving the vector field problem for spheres.
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We thus have p(P? ,(Z))<p(n)—1. The next theorem will allow us to
change this inequality into equality.

THEOREM 3. Let R be a commutative ring in which 2 is not a zero
divisor. Let POL=L" (where L is as in the remarks following Definition 3).
If Ay, - - -, A, are an H-R family of n X n matrices then p(P)Z=s.

ProOF. We shall consider the isomorphism above as an identification,
then the summand L on the left has the form aR where a € L” and P=(aR)+
in L". Since A4,, - - -, A, are an H-R family of nxn matrices they are, in
particular, invertible. Thus since @ € L™is unimodular, so are a4,, a4,, * - -,
aA,. Furthermore a, aAd,, -, aA, are mutually orthogonal since 2 is
not a zero divisor in R and the matrices A4,, - * - , 4, are an H-R family.
Thus ad,," - ,ad,€ (aR)t=P and hence P=(aA,)®d - -®(ad,)dQ.
Thus p(P)=s as was to be shown.

(Note. We would like to thank the referee for his proof of Theorem 3
which is much more efficient than our original proof.)

COROLLARY. p(P}..(2))=p(n)—1.

PrOOF. We have already remarked that we only needed to show
p(P} .(Z))Zp(n)—1 and the corollary now follows immediately from
Theorems 1 and 3.
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