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ON THE JOIN OF SUBNORMAL SUBGROUPS

A. J.  VAN WERKHOOVEN

abstract. Let (5 be the class of finitely generated groups. If

the join of finitely many subnormal X=snX subgroups is always

an 3E-group and ?)={jn, q, i<J?)£ ®.tnen the join of finitely many

subnormal 3£5)-subgroups is an 3E?)-group. If the subnormal coal-

ition class X and the class 9)={in, q, n0}?) are such that whenever

A G 3E5), A has a maximum subnormal 3E-subgroup, then 3£(?)A©)

is a subnormal coalition class (?) A © is the class of finitely generated

?)-groups).

1. Introduction and notation. In this section we state our results.

The notation used is discussed in 1.3 and 1.4.

1.1. Definition. The class 3E is a subnormal coalition class if, whenever

/fand K are subnormal 3E-subgroups of G, their join (H, K) is a subnormal

3E-subgroup of G.

We establish a condition which implies that the class XiX2 is a sub-

normal coalition class, given that X1 and X2 are subnormal coalition

classes.

Theorem A. If the subnormal coalition class X and the class ?) =

{in, q, n0}?) are such that whenever A e 3EÎ), A has a maximum subnormal

X-subgroup, then ï(î)A(5) is a subnormal coalition class.

We may take, for example, for the class ?) of Theorem A the class

&..

It is a consequence of 2.8 that whenever X is a subnormal coalition

class and çQ = {sn,q, n0}?)ç(5, an 3E?)-group has a maximum subnormal

3E-subgroup. Hence, as a corollary to Theorem A we have

Theorem B. IfX is a subnormal coalition class and Î)={sn, q, n0}?) £ (5

is a class of groups, then 3£?) is a subnormal coalition class.

In Theorem B we may take for the class Ï) the classes g, 931, and <5sn.

1.2. Definition. If 3E is a class of groups, then G e SqX if and only if

G is the join of finitely many subnormal ï-subgroups.
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It is clear that every subnormal coalition class is ¿„-closed. It is shown

in [4] that the class of solvable groups is j0-closed.

We also investigate conditions which imply that XjX2 is i0-d°seo!>

given that 3EX and 3£2 are ¿„-closed classes.

Theorem C.   I/X={sn, s0}X and ty={sn, q, «„}?) s (5 then X^^s^XÏÏ).

We leave as an open question whether the condition "X=snX" may

be deleted from the hypothesis of Theorem C. A result in this direction is

Theorem D.   IfX=S(X, then X'&=s0X'$.

The author is grateful to the referee for his helpful comments and

suggestions.

1.3. The identity element and the group of order one are denoted by 1.

If H is a subgroup of G, we write Hç G and denote by \G:H\ the index

of H in G. If \G:H\=n and G=U?=i Ha(i), we say that the set T={a(l),
a(2), • • • , a{n)} is a right transversal for H in G. If H is a subnormal

(normal) subgroup of G, we write H<kG (H<G) and denote by s(G, H)

the subnormal index for H in G. If G is generated by the subsets T„,

a e A, we write G={Tj\x e A). Ha denotes the conjugate oí H by g eG.

If T is a subset of G, HT={H*\t e T). If H and K are subgroups of G,

HK is the set {hk\heH, keK} and [H, K)={[h,k]\heH,keK),
where   [h, k]-=k-1k-1hk.   Define   [H, nK]  inductively  by   [H,0K]=H

and [//,j+1#]= [[#,**],*]•

1.4. A class of groups is a collection of groups 3£ such that 1 eï

and whenever G eX and Gx is isomorphic to G, then Gx eX. We let

5 = the class of finite groups,

(5 = the class of finitely generated groups,

©«• = the class of groups, all of whose subnormal subgroups

are finitely generated,

$Öl(Wä) = the class of groups satisfying the maximal condition for

subgroups (subnormal subgroups).

If 3E is a class of groups, we let

snX = class of subnormal subgroups of 3E-groups,

qX = class of quotients of ï-groups,

n,¡X = class of products of finitely many normal 3£-subgroups.

If q> e {sn, q, n0, s0}, we say that the class X is ç>-closed if <pX=X.

If Y^ {sn, q, n0, s0}, X= YX if 3E is 99-closed for all cp g Y. If 3E and ?) are

two classes of groups, 3£?) denotes the class of 3E-by-î) groups and 3£a?)

denotes the intersection of X and ?).
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2. Some preliminaries.

2.1. Lemma [1, Lemma 3.21]. Let H and K be subgroups of a group,

let N<\K and suppose K¡N can be generated by n elements. Then, for any

i>0, HK=LN[H, tK] where L is generated by at most l+n-|-«2-r--h

n1-1 conjugates of H by elements of K.

2.2. Lemma [2, Lemma 2.4]. Let X={sn,n0}X. If H«G, K«G,
J=(H, K) andJ=HK, then J«G; also J eX if H eX andKeX.

We will need the main results of [3].

2.3. Definition [3, p. 423]. The class X is locally coalescent if

whenever H and K are subnormal 3E-subgroups of G, then every finitely

generated subgroup F of /= {H, K) is contained in some subnormal

X-subgroup X of G such that F^X^J.

2.4. Theorem [3, Theorems A and B]. If X is a class of groups such

that X={sn, n0}X, then X is locally coalescent. If X is a locally coalescent

class, then 3£a(5 is a subnormal coalition class.

2.5. definition.   If X is a class of groups, then

0H(G) = (H | H « G and He X).

2.6. The following are immediate consequences of Definition 2.5 :

(i) ÖX(G) is a characteristic subgroup of G.

(ii) If K is a finitely generated subgroup of 6^{G), there exist finitely

many subnormal 3E-subgroups Hx, H2,- ■ • ,Hn of G such that

A^£ {Hx, H2, • • • -, Hn).
(iii) If X=snX is a subnormal coalition class and K<¡<\G, then dx(K)=

6z(G) C\K.

2.7. Lemma [3, p. 424]. Let Xbea locally coalescent class. If6x(G)=G,

then every finitely generated subgroup of G is contained in some subnormal

X-subgroup of G.

2.8. Lemma. Let X=s¿£ and let ty={sn, ?}?)£©. If Ge3E2), then

6%{G) e X and G/O^G) e ?).

Proof. Let GeXty and let N<G such that NeX and G/Nety.

Since N^6X(G), dx(G)/Ne%)ç<5. It follows from 2.6(ii) that 6X(G) e
SoX=X. Since qV=V, we have G¡et(G) e ?).    D

2.9. Lemma. If X={sn,n0}X and 2J={sw, q, «„}?) are classes such

that whenever A e Xty, 6X(A) e X, then the class 3£?) is locally coalescent.

Proof.   By 2.4, it suffices to show that X^={sn, n0}Xç[).



4 A. J.  VAN WERKHOOVEN [January

Let H and K be normal 3E?)-subgroups oiJ={H, K) and let FH=6S(H)

and FK=6X(K). By hypothesis, FH,FKeX and H¡FH, KIFKeqty=ty.

It follows that FH and FK are normal X-subgroups of J and FHFK eX=

noX. Hence, J¡FHFK g {q, «„}?)=9 and 3£2)=/io3E3).
If #<GgjE2), then ür=e3E(G)Ga£ and G¡Kety. Hence, HK¡K<G¡K

and HK¡Ke'!0=snv0. Also, HnKeX=snX. It follows that Aeï3)

and3E2)=í/23E3).    D

3. Subnormal coalition classes.

3.1. Lemma. Le/ Xbea subnormal coalition class and let <ï)={sn,q, w0}?)

èe a class of groups such that whenever A g 3£?), 0^04) g jE. Let H and K

be subnormal Xty-subgroups of G such that {H,K)=HK. If N< H such that

NeX, H/Nety, and (N,K) is a subnormal X'Tj-subgroup of G, then

{H, K) is a subnormal Xty-subgroup of G.

Proof.   It follows from 2.2 that HK is subnormal in G.

Let M=<JV, handlet

M = Mn< Mm_x < • • • < Mx < M0 = HK

be the standard series for M in HK. Suppose Mi+1 g 3£î). Then ö2(Mi+1)=

Sí e X and M<M¿. Now,

M] = M, n HK = (M, O H)M,+1
and

M../M = ((M, n H)M¡M)(Mi+1¡M).

Since {Mt<~\H)M¡M and Mi+i¡M are subnormal ?)={jn, «0}?)-subgroups

of Mi/Ü?, it follows from 2.2 that Mi\M e Î). Hence, M¿ G 3E?) and

ä*g3E?).    D

3.2. Lemma. Let X be a subnormal coalition class and let ?) =

{sn, q, «„}?) be a class of groups such that whenever A e Xty, 6X(A) G X.

If H is a subnormal XÇi)A($i)-subgroup and K is a subnormal X-subgroup

of G, then (H, K) is a subnormal X(tyf\<S)-subgroup of G.

Proof. Let N=6X(H), J=(H, K), and J={KH, N). By hypothesis,

JVG3E and H¡Ng?(?)a©)=2)a©. If t=s(G,H), it follows from 2.1
that

J - (LN[K, tH], N) = (L, N)([K, tH], N),

where L is the join of a finite number of conjugates of K. Since X is a

subnormal coalition class, M=(L, N) is a subnormal ï-subgroup of G.

Since JVC ([K, tH], N)<H and ?)=??), ([K, tH], N) is a subnormal 3E3)-
subgroup of G. Consequently, by 2.2, 7<<G and J=JH«G.  An
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application of 3.1 shows that Je Xty. A second application of 3.1 shows

that J=JHe£?). Since 6X(J) e X and J¡8x(J).e (5, Je 3E(5)a<5).    D
Proof of Theorem A. Let H and K be subnormal 3£(?)a(5)-

subgroups of G and let /= (H, K). Let N<\H such that NeX and H¡Ne

?Ja(5.
If t=s(G, H), it follows from 2,1 that

(KH, N) = (LN[K, tH], N) = (L, N)([K, tH], N),

where L is the join of a finite number of conjugates of K. By induction on

s(G, K) we conclude that L is a subnormal 3£(?)A(5)-subgroup of G.

An application of 3.2 shows that (L, N) is a subnormal 3£(9)A(5)-subgroup

of G. Also, ([K,tff],N)eX%. It follows from 3.1 that (KH, N) e 3E2)
and from 2.2 that (KH,N)«G. Since J=(KH,N)H, it follows from

3.1 that/e Xty and from 2.2 that J«\G. Since 6X(J) e X and J¡dx(J) e ©,

JeS(?)A<5).    D

4. ¿„-closed classes.

4.1. Lemma. Let X=s„X and %) = {sn, q}^ ^(5 be two classes of groups.

If H=(H1, H2, ■ • ■ , Hn), where H( is a subnormal X-subgroup of G,

and K is a subnormal Xty-subgroup ofG, then (H, K) is an Xty-subgroup of

G.

Proof. Since K e ÏÎ), there exists-N< K such that TV e X and K/N e ?).

If t=s(G, K), an application of 2.1 shows that (HK, N)=(L, [H, tK], N),

where L is the join of a finite number of conjugates of H. Since [H, tK]<jK,

[H, tK]NINe'^=sn'!Qç(5 and there exist finitely many elements

Xi,x2,---,xte [H, tK] such that

([H,<K],JV) = <x1,x2,---,xi,JV>.

Since [H, tK\ £ HK, there exist finitely many elements k1,k2,---,kmeK

such that

(xj, x2, • • •, x,> S (H\ H\ ■■■, Hh°>).

Consequently,

{HK, N) = (L, Hkl, Hks, ■■■ , H**», N)eX = s0X.

But then (H, K)j{HK, N) e qty=?) and (H, K) e 3E3).    D
Proof of Theorem C.   Let G={H1,H2,---,Hn),  where #, is a

subnormal £2>subgroup of G, l^i^n. Let Fi=dx(Hi). By 2.8, F¡el

and fli/F, e ?) ç ©. Let 7t be a finite subset of A", such that Ht={Fi, T{)

andletr=U?=i7'i.
Since X and ?J satisfy the hypothesis of 2.9, the class 3£?) is locally
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coalescent. There exists by 2.7 a subnormal ï?)-subgroup K oí G such

that <r> Ç AT. An application of 4.1 shows that <Fl5 F2, ■ ■ ■ , Fn, K)=G e

Xty.    D

4.2. Lemma. SupposeH<¡G, \G:H\=n<ao, andK^H. If A={\=a{\),
a(2), ■ • ■ , a(n)} is a right transversal for H in G such that G=(K, A), then

there exists a finite subset L of H such that H—{Ka, L\a~x e A).

Proof. Let a, be A and k e K. Since K<=, H<\G, we see that akb'1 e H

if and only if a=b. For all a(i), a(j) e A, 1 ̂ /, j^n, we define a(i,j) e A

uniquely by the equation a(j)a{j)a(i,j)~l G H.

Let R be defined by

H = (Ka, aiOaUHiJ)'11 a-1 e A, 1 ̂  i,j ^ n).

Since H<G, R^H. If g e H, then g=g[lgl* • • ■ gfr for some elements
g(eKKJA and s{^=±l,l<i<m. Set a(/0)=l. There exists a unique

element aft) G A such that aOoígí'oOi)-1 e H. It is easily verified that

(a('o)£Íla('i)-1)ei 's a displayed generator of /?. Suppose that for all j,

1 5jy'</^/w, we have chosen a(i',) such that (a(ij_J)g$ia(ij)~1)'' is a generator

of H. We then choose a(/'¡) g ^4 as the unique element satisfying the equation

«0'i-i)sM't)-1 £ H. Again, (aO^i^'aO'i)-1)*' is a generator of R. But
then

g = a^g'Mi^aii^aiii)-1 • • • aO^Og^aO'J'V'J,

where aft.OgM/,)-1 gR, l^l^m. Since Agi/, a(/'m)=l. Hence,

geR and H=R. The lemma follows if we set L={a(i)a(j)a(i,j)~i\l^

Ujún).    D
Proof of Theorem D. Let G={Hx,H2,---,Hn) where H( is a

subnormal 3Eg-subgroup of G, l^i'^n. Let F<=03E(//1). By 2.8, F,g3E

and #,/F, G g. Since F^d^G), it follows that //^(GJ/e^G) is a finite
subnormal subgroup of GjQj^G). It is a consequence of 2.4 that g is a

subnormal coalition class. Consequently, G/d^G) e g.

Let A and Aiy l^i^n, be right transversals for dx(G) in G and F,

in if, respectively such that 1 G A. Since G=(HU H2, • • ■ , Hn),

G = (Flt F2, • • •, F„, Ai, A2, • ■ ■ , An).

There exists a finite subset U of Ö^G) such that G=(F1,F2, • • • ,F„,

{/, .4). By 2.6(ii), there exist a finite number of subnormal ï-subgroups

Lx,L2,--,Ll of G such that (11)^(1^, L2, ■ • • , £,). If we let

K=(Fi, L,\\^kif^n, l<j^l), an application of 4.2 shows the existence of

a finite subset K of 0i(G) such that

0X(G) = <^, Flc-iG^).
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By 2.6, there exist a finite number of subnormal jE-subgroups Mx, M2, • • • ,

Mm of G such that (V) £ (Mlt M2, ■ ■ ■ , MJ. Hence, dx(G) is the join

of a finite number of subnormal 3£-subgroups and dx(G) e X=SqX.    D
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