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ABsTRACT. This solves the following problem: Which Abelian
groups are the inverse limits of Abelian groups, each of which is a
finite direct sum of quasi-cyclic and bounded Abelian groups?
(Here quasi-cyclic means isomorphic to some Z(p*).) A necessary
and sufficient condition for an Abelian group to be such is that it
takes the form 4,® II, Hom;(4,, Z(p=)) where A, is complete and
reduced, the A4, are torsion-free and the direct product is taken
over the set of prime numbers.

We are going to solve the following problem of L. Fuchs [1]: Which
Abelian groups are the inverse limits of Abelian groups each of which is a
finite direct sum of quasi-cyclic and bounded Abelian groups?

We shall adopt the following notations for an Abelian group 4: A4, is
its maximal divisible subgroup; 4,=A/A4;; A[n]={x € Ajnx=0}; T,(A4)
is the p-primary component of the torsion subgroup of 4. We let Z denote
the group of integers, O the rational numbers, Z,, the p-adic integers, and
Z(p®)=T,(Q/Z). An Abelian group is quasi-cyclic if it is isomorphic to
Z(p*) for some prime number p. To say that 4 is a finite direct sum of
quasi-cyclic and bounded Abelian groups is equivalent to the conditions:
(a) 4, is a finite direct sum of quasi-cyclic groups; (b) 4, is bounded.

Let R be a ring. An R-module shall mean a left R-module. A topology
on an R-module 4 shall be one in which the additive group of 4 becomes a
(Hausdorff) topological group. It is /inear if there is an open base at 0
consisting of R-submodules. A linear topology on A is linearly compact
if it satisfies the condition: Given a family {K,},cq Of residue classes of 4
modulo closed R-submodules, if every finite subfamily has a nonempty
intersection then (Vg Ko7 @ -

Suppose that A is an R-module and 4’ is an R-submodule with some
topology. For x € 4, we call a subset of x+ A4’ a linear subset if it has the
form y + B, where y € x+ A4’ and Bis a closed R-submodule of 4. Evidently
we have

Lemma 1. Let A, B be R-modules, A, B' be respectively their sub-
modules with some topologies, and ¢:A—>B be an R-homomorphism which
induces a continuous R-homomorphism A'—B'.
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() If {Ko}weq is a family of linear subsets of x+A’ (x € A), then (,eq K.,
is either a linear subset or & .

Furthermore, if A’ is either linearly compact or compact and every finite
subfamily of {K,}peq has nonempty intersection then (\yeq Ko7 @ .

(ii) For y € p(x)+B’, g2 (y)N(x+A4") is a linear subset of x+A4'.

(ili) If A’ is either linearly compact or compact and K is a linear subset of
x+A’ (x € A), then p(K) is a linear subset of p(x)+B'.

The next lemma is due to C. U. Jensen [2]. An alternative proof is in-
cluded here because it is more elementary and needs fewer assumptions
than that of [2]. The idea of this proof is derived from [3, Proposition
13-2-1, p. 66]. (We were not aware of the result of [2] until Professor
Joseph Rotman kindly informed us. We are also indebted to the referee
for some improvements.)

LemMma 2 (C. U. JENSEN). Let
{o.} {ra}

0— {Am "aﬂ} b {Av ‘”a#} > {A:3 :ﬁ} —> 0

be an exact sequence of inverse systems of R-modules where A, are linearly
compact (in some linear topologies) and m,; are continuous, then T=
proj lim 7, is onto.

The same conclusion also holds if 4, are compact (in some topologies)
instead of linearly compact.

ProOF. Given x={x,} € proj lim 4, we have an inverse system of sets
{E,, f.s}, where E,=7.*(x,) and f,,;: E;—~E, are induced by .. By Lemma
1, the conditions (i)-(iv) of [4, Theorem 1, p. 199] are satisfied (here S,
is the family of all linear subsets of E, together with &). Therefore
proj lim E, is nonempty. Let z € proj lim E,, then we have 7(x)=x, i.., 7
is onto.

RemMArk. This proof also works for inverse systems of rings as well as
(noncommutative) groups.

COROLLARY 1. If {A,, m,} is an inverse system of divisible Abelian
groups satisfying the conditions: For every positive integer n, (a) each
A,[n] has a compact topology, (b) each w5 induces a continuous homo-
morphism m,g[n): Ag[n]—A,[n], then proj lim A, is also divisible.

ProoF. Given a positive integer n, we have an exact sequence

{ra}

0—s {A [nL ¢ﬁ[n]} — {Aa’ "aﬂ} — {Aa’ "aﬂ} — 0
where 7,(x)=nx for all x € 4,. By Lemma 2,

7 = proj lim ,:proj lim 4, — proj lim 4,
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is onto. We can verify directly that 7(x)=nx for all x € proj lim 4,. There-
fore proj lim 4, is divisible.

REMARK. For bounded Abelian groups compactness coincides with
linear compactness. There is no gain of generality to assume that the
A,[n] are linearly compact instead of being compact.

COROLLARY 2. If {A,, m,g} is an inverse system of Abelian groups where
each A, is a finite direct sum of quasi-cyclic groups then proj lim 4, is
divisible.

THEOREM 1. If {A,, m} is an inverse system of Abelian groups where A,
are finite direct sums of quasi-cyclic and bounded Abelian groups, then

A; = projlim(4,)s, A4, = proj lim(4,),.
As a consequence A is algebraically compact.

Proor. We have an exact sequence of inverse systems of Abelian groups
0_’{(‘4«)& ﬂ;ﬂ}—’{Aa, "aﬁ}—’{(Aa)n ‘”;,ﬂ}_’o where 77; ’ ”:ﬂ are homo-
morphisms induced by 7,5. By Lemma 2, the limit sequence

0 — proj lim(4,); — proj lim 4, — proj lim(4,), = 0

is exact. By Corollary 2, proj lim(4,), is divisible. By [1, Proposition 39.4],
proj lim(4,), is reduced. Therefore proj lim(4,),=44, projlim(4,),=4,.

LeMMA 3. If {A,, m,p} is an inverse system of torsion Abelian groups in
which each A, has only a finite number of nonzero primary components, then

proj lim 4, = [ | (proj lim T,(4,)).
P

This is a consequence of the universal property of inverse limit.

LEMMA 4. Let A be an Abelian group. A is the inverse limit of Abelian
groups each of which is the direct sum of finite copies of Z(p®) iff A=
Homy(B, Z(p*)) where B is a torsion-free Abelian group.

PrROOF. Let {4,, 7,4} be an inverse system of Abelian groups, where the
A, are finite direct sums of Z(p®), and A=proj lim 4,.

Case 1. All m,, are onto. We have a direct system {4,, #,5} of Abelian
groups with

A, = Homy(4,, Z(p®)),  #.5 = Homgy(my, Z(p®)).

Obviously A, are finite direct sums of Z, and #,, are monomorphisms.
We also have

A, = Homz(4,, Z(p®)),  m, = Homy(#,,, Z(p®)).
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(These can be obtained either by direct computation or by Pontrjagin
duality.) Therefore

proj lim A4, = proj lim Homz(4,, Z(p®)) = Homy(inj lim 4., Z(p*)).

Since A, are torsion-free and #,; are 1-1, B=inj lim 4, is torsion-free.
Case 11 (the general case). Let w,:A—A, be the inverse limit pro-

jections, A,=Im =,, and m,5: A;—A, be induced by .4, then {4,, 7,4} is

an inverse system. Obviously the w; are onto, and A=proj lim 4,. By

Case I, A=Homy(B, Z(p*)), where B is a torsion-free Abelian group.
The converse is obvious.

COROLLARY. An Abelian group is the inverse limit of finite direct sums
of Z(p®) iff it is the direct product of copies of Z(p*) and copies of Q where
the number of Q among the factors is either O or an infinite cardinal.

This is a consequence of [1, Theorem 47.1].
Combining all the previous results we have

THEOREM 2. An Abelian group A is the inverse limit of Abelian groups
each of which is a finite direct sum of quasi-cyclic and bounded Abelian groups
iff the following conditions are satisfied:

(@) A, is complete.

(b) 4;=11], Hom(B,, Z(p®)), where the B, are torsion-free Abelian
groups.

COROLLARY. Condition (b) can be replaced by
(b") Agis adirect product of quasi-cyclic groups and copies of Q where the
number of Q among the factors is either O or an infinite cardinal.

REMARK. Our results can be easily extended to modules over a Dede-
kind domain.
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