PROBLEM 26 OF L. FUCHS

CHIN-SHUI HSÜ

ABSTRACT. This solves the following problem: Which Abelian groups are the inverse limits of Abelian groups, each of which is a finite direct sum of quasi-cyclic and bounded Abelian groups? (Here quasi-cyclic means isomorphic to some $Z(p^{\infty})$.) A necessary and sufficient condition for an Abelian group to be such is that it takes the form $A_r \oplus \Pi_p \operatorname{Hom}_Z(A_p, Z(p^{\infty}))$ where A_r is complete and reduced, the A_p are torsion-free and the direct product is taken over the set of prime numbers.

We are going to solve the following problem of L. Fuchs [1]: Which Abelian groups are the inverse limits of Abelian groups each of which is a finite direct sum of quasi-cyclic and bounded Abelian groups?

We shall adopt the following notations for an Abelian group $A: A_d$ is its maximal divisible subgroup; $A_r = A/A_d$; $A[n] = \{x \in A | nx = 0\}$; $T_p(A)$ is the *p*-primary component of the torsion subgroup of A. We let Z denote the group of integers, Q the rational numbers, \hat{Z}_p the *p*-adic integers, and $Z(p^{\infty}) = T_p(Q/Z)$. An Abelian group is *quasi-cyclic* if it is isomorphic to $Z(p^{\infty})$ for some prime number p. To say that A is a finite direct sum of quasi-cyclic and bounded Abelian groups is equivalent to the conditions:

(a) A_d is a finite direct sum of quasi-cyclic groups; (b) A_r is bounded.

Let R be a ring. An R-module shall mean a left R-module. A topology on an R-module A shall be one in which the additive group of A becomes a (Hausdorff) topological group. It is *linear* if there is an open base at 0 consisting of R-submodules. A linear topology on A is *linearly compact* if it satisfies the condition: Given a family $\{K_{\omega}\}_{{\omega}\in\Omega}$ of residue classes of A modulo closed R-submodules, if every finite subfamily has a nonempty intersection then $\bigcap_{{\omega}\in\Omega} K_{\omega} \neq \varnothing$.

Suppose that A is an R-module and A' is an R-submodule with some topology. For $x \in A$, we call a subset of x+A' a *linear subset* if it has the form y+B, where $y \in x+A'$ and B is a closed R-submodule of A. Evidently we have

LEMMA 1. Let A, B be R-modules, A', B' be respectively their submodules with some topologies, and $\varphi: A \rightarrow B$ be an R-homomorphism which induces a continuous R-homomorphism $A' \rightarrow B'$.

Received by the editors November 16, 1970 and, in revised form, November 22, 1971. AMS (MOS) subject classifications (1970). Primary 20K25.

[©] American Mathematical Society 1974

(i) If $\{K_{\omega}\}_{{\omega}\in\Omega}$ is a family of linear subsets of x+A' $(x\in A)$, then $\bigcap_{{\omega}\in\Omega} K_{\omega}$ is either a linear subset or \varnothing .

Furthermore, if A' is either linearly compact or compact and every finite subfamily of $\{K_{\omega}\}_{{\omega}\in\Omega}$ has nonempty intersection then $\bigcap_{{\omega}\in\Omega}K_{\omega}\neq\varnothing$.

- (ii) For $y \in \varphi(x) + B'$, $\varphi^{-1}(y) \cap (x + A')$ is a linear subset of x + A'.
- (iii) If A' is either linearly compact or compact and K is a linear subset of x+A' ($x \in A$), then $\varphi(K)$ is a linear subset of $\varphi(x)+B'$.

The next lemma is due to C. U. Jensen [2]. An alternative proof is included here because it is more elementary and needs fewer assumptions than that of [2]. The idea of this proof is derived from [3, Proposition 13-2-1, p. 66]. (We were not aware of the result of [2] until Professor Joseph Rotman kindly informed us. We are also indebted to the referee for some improvements.)

LEMMA 2 (C. U. JENSEN). Let

$$0 \longrightarrow \{A'_{\alpha}, \pi'_{\alpha\beta}\} \xrightarrow{\{\sigma_{\alpha}\}} \{A_{\alpha}, \pi_{\alpha\beta}\} \xrightarrow{\{\tau_{\alpha}\}} \{A''_{\alpha}, \pi''_{\alpha\beta}\} \longrightarrow 0$$

be an exact sequence of inverse systems of R-modules where A'_{α} are linearly compact (in some linear topologies) and $\pi'_{\alpha\beta}$ are continuous, then $\tau = \text{proj lim } \tau_{\alpha}$ is onto.

The same conclusion also holds if A'_{α} are compact (in some topologies) instead of linearly compact.

PROOF. Given $x = \{x_{\alpha}\} \in \text{proj lim } A_{\alpha}^{r}$ we have an inverse system of sets $\{E_{\alpha}, f_{\alpha\beta}\}$, where $E_{\alpha} = \tau_{\alpha}^{-1}(x_{\alpha})$ and $f_{\alpha\beta}: E_{\beta} \to E_{\alpha}$ are induced by $\pi_{\alpha\beta}$. By Lemma 1, the conditions (i)–(iv) of [4, Theorem 1, p. 199] are satisfied (here \mathfrak{S}_{α} is the family of all linear subsets of E_{α} together with \emptyset). Therefore proj lim E_{α} is nonempty. Let $z \in \text{proj lim } E_{\alpha}$, then we have $\tau(x) = x$, i.e., τ is onto.

REMARK. This proof also works for inverse systems of rings as well as (noncommutative) groups.

COROLLARY 1. If $\{A_{\alpha}, \pi_{\alpha\beta}\}$ is an inverse system of divisible Abelian groups satisfying the conditions: For every positive integer n, (a) each $A_{\alpha}[n]$ has a compact topology, (b) each $\pi_{\alpha\beta}$ induces a continuous homomorphism $\pi_{\alpha\beta}[n]: A_{\beta}[n] \rightarrow A_{\alpha}[n]$, then proj $\lim_{\alpha} A_{\alpha}$ is also divisible.

PROOF. Given a positive integer n, we have an exact sequence

$$0 \longrightarrow \{A_{\alpha}[n], \pi_{\alpha\beta}[n]\} \longrightarrow \{A_{\alpha}, \pi_{\alpha\beta}\} \xrightarrow{\{\tau_{\alpha}\}} \{A_{\alpha}, \pi_{\alpha\beta}\} \longrightarrow 0$$
 where $\tau_{\alpha}(x) = nx$ for all $x \in A_{\alpha}$. By Lemma 2,

$$\tau = \text{proj lim } \tau_{\alpha} : \text{proj lim } A_{\alpha} \to \text{proj lim } A_{\alpha}$$

is onto. We can verify directly that $\tau(x)=nx$ for all $x \in \text{proj lim } A_{\alpha}$. Therefore proj $\lim A_{\alpha}$ is divisible.

REMARK. For bounded Abelian groups compactness coincides with linear compactness. There is no gain of generality to assume that the $A_{\alpha}[n]$ are linearly compact instead of being compact.

COROLLARY 2. If $\{A_{\alpha}, \pi_{\alpha\beta}\}$ is an inverse system of Abelian groups where each A_{α} is a finite direct sum of quasi-cyclic groups then proj $\lim A_{\alpha}$ is divisible.

THEOREM 1. If $\{A_{\alpha}, \pi_{\alpha\beta}\}$ is an inverse system of Abelian groups where A_{α} are finite direct sums of quasi-cyclic and bounded Abelian groups, then

$$A_d = \text{proj lim}(A_\alpha)_d, \quad A_r = \text{proj lim}(A_\alpha)_r.$$

As a consequence A is algebraically compact.

PROOF. We have an exact sequence of inverse systems of Abelian groups $0 \rightarrow \{(A_{\alpha})_{a}, \pi'_{\alpha\beta}\} \rightarrow \{A_{\alpha}, \pi_{\alpha\beta}\} \rightarrow \{(A_{\alpha})_{\tau}, \pi''_{\alpha\beta}\} \rightarrow 0$ where $\pi'_{\alpha\beta}, \pi''_{\alpha\beta}$ are homomorphisms induced by $\pi_{\alpha\beta}$. By Lemma 2, the limit sequence

$$0 \to \operatorname{proj} \lim (A_{\alpha})_{\alpha} \to \operatorname{proj} \lim A_{\alpha} \to \operatorname{proj} \lim (A_{\alpha})_{r} \to 0$$

is exact. By Corollary 2, proj $\lim_{\alpha} (A_{\alpha})_d$ is divisible. By [1, Proposition 39.4], proj $\lim_{\alpha} (A_{\alpha})_r$ is reduced. Therefore proj $\lim_{\alpha} (A_{\alpha})_d = A_d$, proj $\lim_{\alpha} (A_{\alpha})_r = A_r$.

LEMMA 3. If $\{A_{\alpha}, \pi_{\alpha\beta}\}$ is an inverse system of torsion Abelian groups in which each A_{α} has only a finite number of nonzero primary components, then

$$\operatorname{proj lim} A_{\alpha} = \prod_{p} (\operatorname{proj lim} T_{p}(A_{\alpha})).$$

This is a consequence of the universal property of inverse limit.

LEMMA 4. Let A be an Abelian group. A is the inverse limit of Abelian groups each of which is the direct sum of finite copies of $Z(p^{\infty})$ iff $A = \text{Hom}_{Z}(B, Z(p^{\infty}))$ where B is a torsion-free Abelian group.

PROOF. Let $\{A_{\alpha}, \pi_{\alpha\beta}\}$ be an inverse system of Abelian groups, where the A_{α} are finite direct sums of $Z(p^{\infty})$, and $A=\text{proj lim } A_{\alpha}$.

Case I. All $\pi_{\alpha\beta}$ are onto. We have a direct system $\{\hat{A}_{\alpha}, \hat{\pi}_{\alpha\beta}\}\$ of Abelian groups with

$$\hat{A}_{\alpha} = \operatorname{Hom}_{Z}(A_{\alpha}, Z(p^{\infty})), \qquad \hat{\pi}_{\alpha\beta} = \operatorname{Hom}_{Z}(\pi_{\alpha\beta}, Z(p^{\infty})).$$

Obviously \hat{A}_{α} are finite direct sums of \hat{Z}_{p} and $\hat{\pi}_{\alpha\beta}$ are monomorphisms. We also have

$$A_{\alpha} = \operatorname{Hom}_{Z}(\hat{A}_{\alpha}, Z(p^{\infty})), \qquad \pi_{\alpha\beta} = \operatorname{Hom}_{Z}(\hat{\pi}_{\alpha\beta}, Z(p^{\infty})).$$

(These can be obtained either by direct computation or by Pontrjagin duality.) Therefore

proj $\lim A_{\alpha} = \operatorname{proj lim} \operatorname{Hom}_{Z}(\hat{A}_{\alpha}, Z(p^{\infty})) = \operatorname{Hom}_{Z}(\operatorname{inj lim} \hat{A}_{\alpha}, Z(p^{\infty})).$

Since \hat{A}_{α} are torsion-free and $\hat{\pi}_{\alpha\beta}$ are 1-1, B=inj $\lim \hat{A}_{\alpha}$ is torsion-free. Case II (the general case). Let $\pi_{\alpha}: A \to A_{\alpha}$ be the inverse limit projections, $A'_{\alpha}= \lim \pi_{\alpha}$, and $\pi'_{\alpha\beta}: A'_{\beta} \to A'_{\alpha}$ be induced by $\pi_{\alpha\beta}$, then $\{A'_{\alpha}, \pi'_{\alpha\beta}\}$ is an inverse system. Obviously the $\pi'_{\alpha\beta}$ are onto, and A=proj $\lim A'_{\alpha}$. By Case I, $A= \operatorname{Hom}_{Z}(B, Z(p^{\infty}))$, where B is a torsion-free Abelian group. The converse is obvious.

COROLLARY. An Abelian group is the inverse limit of finite direct sums of $Z(p^{\infty})$ iff it is the direct product of copies of $Z(p^{\infty})$ and copies of Q where the number of Q among the factors is either 0 or an infinite cardinal.

This is a consequence of [1, Theorem 47.1]. Combining all the previous results we have

- THEOREM 2. An Abelian group A is the inverse limit of Abelian groups each of which is a finite direct sum of quasi-cyclic and bounded Abelian groups iff the following conditions are satisfied:
 - (a) A, is complete.
- (b) $A_d = \prod_p \operatorname{Hom}_Z(B_p, Z(p^{\infty}))$, where the B_p are torsion-free Abelian groups.

COROLLARY. Condition (b) can be replaced by

(b') A_d is a direct product of quasi-cyclic groups and copies of Q where the number of Q among the factors is either 0 or an infinite cardinal.

REMARK. Our results can be easily extended to modules over a Dedekind domain.

REFERENCES

- 1. L. Fuchs, Infinite abelian groups. Vol. 1, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 #333.
- 2. C. U. Jensen, On the vanishing of lim (4), J. Algebra 15 (1970), 151-166. MR 41 #5460.
- 3. A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Etudes Sci. Publ. Math. No. 11 (1961). MR 36 #177c.
- 4. N. Bourbaki, *Théorie des ensembles*, Chap. I: Description de la mathématique formelle, Actualités Sci. Indust., no. 1212, Hermann, Paris, 1954; English transl., Addison-Wesley, Reading, Mass., 1968. MR 16, 454; MR 38 #5631.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52240