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INTEGRAL DOMAINS
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Abstract. In this paper, we prove the following theorem:

Let A=k[xu ■ • ■ , xt] be a finitely generated integral domain over

a field k of characteristic zero. Then A regular, i.e. the local ring

A„ is regular for all primes qÇ A, is equivalent to the following two

conditions: (1) No nonminimal prime of A is differential, and (2)

dern(/i/£)=Der"04://fc) for all n. Here Dern(^/Ar) denotes the A-

module of all nth order derivations of A into A which are zero or k,

and der°(A/k) denotes the /4-submodule of Der"(/4/fc) generated

by composites ái ° ■ • • o ô, (1 ̂ j^n) of first order derivations ó¡.

Introduction. Throughout this paper we assume k is a field of charac-

teristic zero. Let A=k[xlt • • •, xt] be a finitely generated integral domain

over k. We shall let Der"(i4/A:) denote the .¿-module of nth order deriva-

tions (see [6]) of A to itself which vanish on k. It follows from Proposition

4 and Corollary 6.1 of [6] that any composite ^ o • • • o ô} (l^y'</i) of

y-derivations ô{ e Der^A/k) is an nth order derivation in DeTn(A¡k). The

,4-submodule of Dern(,4/A;) spanned by all such composites will be

denoted by dern{Ajk).

In general, one would like to know under what conditions is dern(A¡k)=

Dern(A[k) for all n. Recently K. Mount and O. E. Villamayor in* [4]

obtained a result for domains of dimension one over k. They proved the

following result: Let A be the coordinate ring of an irreducible algebraic

curve over k. Let p be a nonzero prime ideal of A. Then Av is a regular

local ring if and only if dern(/a„/£)=Dern(/4j,/Ä:) for all n. Let us say a

finitely generated domain A=k[xlt ■ ■ ■ , xt] over k is regular if A, is a

regular local ring for all prime ideals q^A. Since deTn(A¡k) <S>AA^

dern(Ajk) and Der"(^//t) ®A A,^Dexn{AJk), the result of Mount and

Villamayor can be restated as follows: Let A=k[xlt • • • , xt] be a finitely

generated integral domain over a field k of characteristic zero. Suppose A

has dimension one over k, i.e., the quotient field of A has transcendence

degree one over k. Then A is regular if and only if dern(Alk)=Dezn(Alk)

for all n.
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We shall say that a prime ideal p^A is differential if ô(p)çp for all

ô e Der1^/^). In this paper, we shall prove the following result: Let

A=k[xx, ■ ■ • , xt] be a finitely generated integral domain over a field k of

characteristic zero. Then A is regular if and only if (1) no nonminimal

prime ideal q^A is differential, and (2) dern(^/A:)=Dern(^/A:) for all n.

Main results.   We begin with the following fundamental theorem.

Theorem 1. Let A=k[xu • • ■ , xt] be a finitely generated integral

domain over afield k ofcharacteristic zero. Then if (I) no nonminimal prime

ideal q^A is differential and (2) dern(Alk)=DeTn(A¡k) for all n, then A

is integrally closed.

Proof. The proof is by contradiction. Let Q denote the quotient

field of A, and let Ä denote the integral closure of A in Q. We assume

Aj^Ä. Thus, the conductor C=A:Ä is a proper ideal in A, i.e., 0<C<A.

Let/? be an associated prime of C. It follows from [7, Corollary, p. 169]

that C is a differential ideal in A. Since p is an associated prime of C, p

is a differential prime ideal in A [8, Theorem 1]. Thus by hypothesis, p

is a minimal prime ideal of A.

If R is any ¿-algebra, we shall denote by D1(R/k) the Ä-module of

first order differentials of R over k (see [5]).

Now consider the local ring A„. The integral closure Äv of Av in Q

is a finitely generated .¿„-module and hence a semilocal ring. Let

{P\y ' ' ' > Pm) denote the maximal ideals of Ä„. Since C<i',,)?i.= Fi is a

discrete rank one valuation ring, [5, Theorem 3'] implies that EP-'Vjk)

is a free K¿-module of rank r. Here r is the transcendence degree of A over

k. It follows that D1(ÄPlk) is a projective .¿„-module of rank r. Thus,

since /i,, is semilocal, ZP-'ÄJk) is a free zip-module of rank r.

Let d:Av-+D\Ajk) and d:Äv-*Dx{Äv\k) denote the canonical k-

derivations oí Av and Äv into D^Ajk) and D^ÄJk) respectively. If

K(A/p) denotes the quotient field of Ajp, then K(A¡p) has transcendence

degree r—\ over k. Thus, there exist elements <xx, • • • , «,_! e A—p such

that K(A\p) is a separable algebraic extension of k(5.x, • - • , ä.^). Here

&i of course denotes the image of a¿ in A\p. We note that F=k(xlf •••, a^J

is a field contained in Av.

By [9, Theorem 18, p. 45], there exists a ß e ftZi Â such that /? gener-

ates the maximal ideal of each Vt. From the proof of [5, Theorem 3'],

we have the following short exact sequence of Frmodules:

(1) 0 - Vt ®, D\F/k) - D\VJk) - D'^/F) - 0.

It easily follows from (1) that {¿¿(0), d^), • ■ ; d^x^)} is a free Krbasis

of D^VJk).  Here di-.Vi-^D^VJk) is  the  canonical derivation.  An
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application of Nakayama's lemma shows that {d(ß), d(<x.]), • • • , ¿(a,^)}

is a free basis of D1(ÄJk).
Let {T0,T1( • • • .Y^cHomj (D^ÄJk), Ä,) be a dual basis to

{d(ß), dix,), ■■■, dioi^czD^ÄJk). Then setting d,«^ o d, we get r

Ar-derivations of /i„ such that o0(/S)=ái(a¿)=l, á0(ai)=ái(/S)=0 and

(5j(aJ)=0 if *#/ Since Hom^D1^/**), A^Da^Ajk), we see that

{<50, du • ' •, ¿r-i} is a free /„-module basis for Der^^/À:). Now if <p e

Der^Ajk), then by [7, Theorem] 95 extends uniquely to q> e Der1^,,/**).

Thus, there exist a„, • • •, a,^ e Ä„ such that

# = a0ô0 + a^ + • • • + a^ô^.

We wish to characterize a0.

Now d when restricted to Av gives a ^-derivation of Av into Dl(ÄJk).

Hence, by the universal mapping property of Dl{Av¡k), there exists a

unique ^„-module homomorphism a:D1(AJk)~^Dl(ÄJk) such that

a o d=d\A . Since ¿(a,) e Dl(Ajk), rf(a¿) e Im er. Thus, we can write

Im a = Máu8) © ̂ fo) © • • • © ¿„¿(a,^)

for some y* „-submodule M<^ÄV. If T=ker a, then

ßWO ®¿, 6 SÉ D\Q/k) ̂  D\ÄJk) ®Av Ap

implies that ris a torsion submodule of D1(Ajk). Thus, we have

Hom^,(Im a, A,) S HomA,(D\AJk)IT, Av)

{) S KomA¿D\AJk), A„) fi* Derx(,4„/fc).

Now, if M=(0), then Im a is a free .¿„-module. Hence by (2), Der^AJk)

is a free ^„-module. But then [3, Theorem 1] implies that Av is normal

which is a contradiction. Thus, M is a nonzero submodule of Äv.

We next note that if <p e Der1 (A Jk), and we write #=a0ô0+a1ô1A-h

ûj-A-i, then a0M^AP. If aaM—As, then M is a free ^„-module. Con-

sequently, Im a is free, and we again reach a contradiction. Thus, a0M^

pAv, the maximal ideal of Av.

Now let {zl5 • • • , zj be a minimal basis for the maximal ideal pAv.

By [5, (G)] the following sequence of AjpA„-modules is exact:

(3)   0 - pAJp^A, - (¿„/M„) <8U, 2> W) - D\(AJpAp)lk) - 0.

Since Av¡pA¿^K(A\p) is a separable algebraic extension of F, (3) implies

that D\Ajk) is generated as an .¿„-module by {diz,), • • •, d(zt),

d(*ù, •••, ¿(*r-i)}- Thus, {¿„fo), • • ■ , <50(^i)} generate M.
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The argument from this point on is essentially that found in [4] applied

to the DerH/iJFJ-components of De^ÇAjk). If vt denotes the valuation

on Vf, then vi(ô0(zj))=vi(zj)—l for all y'=l, • • • , / and i=l, • • • , m.

Thus if <p e Der^Ajk) and <p=a0ô0-\-Va^ô^, then a0 e f|*L i Pi-

If I={a0eAv\a0ô0+-\-ar_1ôT_1eDetl(A1,lk) for some fl.eyfp}, then

Wx= (ß*) for some integer/^ 1. Set C • Vx=(ße) and find y e C such that

v1(y)=c. Choose an integer N sufficiently large so that fN>c. Then

yô% eDtr"(AJk) but yl$ $ áa?(AJk). Thus hypothesis (2) in the
theorem is contradicted and the proof is complete.   □

We can now prove the main result of this paper.

Theorem 2. Let A=k[x1, ■ ■ • ,xt] be a finitely generated integral

domain over afield k of characteristic zero. Then A is regular if and only if

(1) no nonminimal prime ideal q^ A is differential, and (2) dcrn(A/k)=

T>exn(Alk)foralln.

Proof. If A is regular, then condition (1) follows from [8, Theorem 3].

Condition (2) follows from [2, Theorem 16.11, 2].

So conversely suppose A satisfies conditions (1) and (2). By Theorem 1,

A is an integrally closed domain. Suppose q is a prime ideal of A of height

one. Then AQ is a discrete rank one valuation ring and hence a regular

local ring. Let us assume that A„ is a regular local ring for all primes q

having height less than k. Here l^k<r the transcendence degree of A

over k. Now suppose q is a prime ideal of height k+1 in A. Then by the

induction hypothesis every proper localization of Aa is a regular local ring.

If we assume A„ itself is not regular, then it follows from [8, Theorem 5]

that qA„ is a differential ideal in A„. But, q is a nonminimal prime of A

and hence by hypothesis is not differential in A. Thus qAq is not differential

in A„. Consequently, AQ must be regular and the proof is complete.    □
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