THE POSET OF SKEW FIELDS GENERATED BY A FREE ALGEBRA

JAMES L. FISHER¹

ABSTRACT. This paper shows that the poset of skew fields generated by a free algebra contains a subposet isomorphic to the lattice of all subsets of an infinite set.

Let R be a ring with identity. An R-field (K, λ) is a skew field K with an identity preserving ring homomorphism λ from R into K. If λ is understood from context, (K, λ) will be written as K. The R-field (K, λ) is an epic R-field if K is the smallest sub skew field of K containing $\lambda(R)$. Call two epic R-fields (K_1, λ_1) and (K_2, λ_2) equivalent if there exists an isomorphism γ from K_1 onto K_2 such that $\gamma \lambda_1 = \lambda_2$. By abuse of notation, epic R-field will refer to an equivalence class of epic R-fields. For epic R-fields (K_1, λ_1) and (K_2, λ_2) define $(K_1, \lambda_1) \geq (K_2, \lambda_2)$ if there exists a local subring L of K_1 with $L \supseteq \lambda_1(R)$, and a homorphism γ from L onto K_2 such that $\gamma \lambda_1 = \lambda_2$. A straightforward extension of [4, Lemma 1] shows that \geq is a partial ordering on the set of epic R-fields. This partially ordered set will be denoted by \mathscr{F}_R .

The set of epic R-fields (K, λ) with λ a one-to-one map is a subposet to be denoted by \mathscr{G}_R . For a commutative ring, \mathscr{G}_R either contains one element or is empty depending on whether R is or is not an integral domain. For the ring R of polynomials in noncommuting variables with coefficients in the skew field k (hereafter called a free k-algebra), the structure is much richer. Moufang [9] in 1937 proved that \mathscr{G}_R is not empty. Neumann [10] in 1949 proved that $|\mathscr{G}_R| \ge 2$. Amitsur [1] in 1966 proved that \mathscr{G}_R has a unique maximal element. Fisher [4] in 1971 proved that \mathscr{G}_R contains infinitely many minimal elements. Cohn [2] gave a characterization for general rings in terms of sets of matrices over R called prime matrix ideals. Fisher [5] gave a characterization for general algebras R over infinite fields in terms of right Ore R-domains and homomorphisms.

Received by the editors February 23, 1973.

AMS (MOS) subject classifications (1970). Primary 16A06, 16A40; Secondary 16A02, 16A08

Key words and phrases. Skew field, free algebra, ordered group, epic R-field, power series ring, poset.

¹ Research supported by the National Research Council of Canada.

This paper shows the following: Let F be the free group on the set X where the cardinality of X is at least two. Define F'' = [[F, F], [F, F]]. Let k be a skew field and R the free k-algebra on the set X.

THEOREM 1. \mathcal{G}_R contains a subposet corresponding to the set of normal subgroups H of F with $H \subseteq F''$ and F/H orderable, where $H_1 \supseteq H_2$ if $H_2 \supseteq H_1$ and H_2/H_1 is a convex normal subgroup of F/H_1 under some ordering of F/H_1 .

Theorem 2. \mathcal{G}_R contains a subposet isomorphic to the lattice of all subsets of an infinite set.

In order to prove these theorems, we will use formal power series ([10] or see [6]). Let G be an ordered group and k a skew field. If ϕ is a map from G into k, then $\sup(\phi) = \{g \in G : \phi(g) \neq 0\}$. Define $D(G) = \{\phi : \sup(\phi) \text{ is well ordered in the full ordering of } G\}$. Addition and multiplication in D(G) are given by

$$(\phi + \psi)(g) = \phi(g) + \psi(g), \qquad (\phi\psi)(g) = \sum_{hl=g} \phi(h)\psi(l).$$

It is proven in [10] that there is only a finite number of nonzero terms in the summation, and that D(G) is a skew field. Furthermore O(G)= $\{\phi \in D(G): g \ge e \text{ for all } g \in \text{supp}(\phi)\}$ is a valuation ring with corresponding valuation $v(\phi) = \min\{\sup(\phi)\}\$ [11, p. 24]. The invariant primes of the associated valuation ring O(G) correspond exactly to the convex normal subgroups of G [11, p. 14]. Furthermore, if H is a normal convex subgroup of G with corresponding invariant prime P then $O(G)\backslash P$ forms a right Ore system [11, p. 15] and the localization S(G, H) maps naturally onto D(G/H). Define K(G) to be the smallest sub skew field of D(G) containing the group ring kG. Let G_1 and G_2 be ordered groups which are isomorphic under an isomorphism α as groups (but not necessarily as ordered groups). Let λ_i be the natural isomorphisms of the group rings kG_i into $K(G_i)$, i=1, 2. Hughes [8] has shown that there exists an isomorphism β of $K(G_1)$ onto $K(G_2)$ such that $\beta \lambda_1 = \lambda_2 \alpha$. Hence with an orderable group G we associate the (unique up to kG-preserving isomorphism) skew field K(G). Thus for a normal subgroup H which is convex under some ordering of G, $S(G, H) \cap K(G)$ is a local subring of K(G) which maps homomorphically onto K(G/H). Hence $K(G) \ge K(G/H)$.

The proof of Theorem 1 will now be completed with the following lemma.

LEMMA 3. The free semigroup on X is embedded in F/F''.

PROOF. The proof follows easily from the matrix representation of F/F'' contained in [7].

Thus the free k-algebra on X is a subalgebra of kF/H where H is a normal subgroup of F, and $H \subseteq F''$. If in addition F/H is orderable then $K(F/H) \in \mathscr{G}_R$. It is clear that for H_1 and H_2 distinct normal subgroups of F with $H_i \subseteq F''$, $K(F/H_1)$ is not isomorphic to $K(F/H_2)$ as R-fields although it is entirely possible they may be isomorphic as skew fields. Hence Theorem 1 is proven.

PROOF OF THEOREM 2. By [7] there exists a representation of F/[F'', F] onto a group M of matrices. The kernel of the representation is a subgroup properly contained in F''/[F'', F]. M'' is central and free abelian on an infinite number of generators. Hence each subset S of the free generator set Y of M'' generates a central subgroup H(S) of M. The group M/H(S) is orderable since $F/F'' \cong M/M''$ is orderable and M''/H(S) is central free abelian, isomorphic to $H(Y\backslash S)$. If $S_1 \subset S_2$ then $H(S_1) \subset H(S_2)$ and $H(S_2)/H(S_1)$ is a convex normal subgroup under an appropriate ordering of $M/H(S_1)$. Thus, by Theorem 1, $K(M/H(S_1)) \geq K(M/H(S_2))$ and \mathscr{G}_R contains a poset isomorphic to the lattice of subsets of Y.

COROLLARY. \mathcal{G}_R contains infinite ascending and descending chains.

ACKNOWLEDGEMENT. I would like to thank Akbar Rhemtulla and Stewart Steinberg for their helpful comments.

REFERENCES

- 1. S. A. Amitsur, Rational identities and applications to algebra and geometry, J. Algebra 3 (1966), 304-359. MR 33 #139.
- 2. P. M. Cohn, Free rings and their relations, Academic Press, London and New York, 1971.
 - 3. ——, Rings of fractions, University of Alberta Lecture Notes, 1972.
- 4. J. L. Fisher, Embedding free algebras in skew fields, Proc. Amer. Math. Soc. 30 (1971), 453-458. MR 43 #7465.
 - 5. —, The category of epic R-fields, J. Algebra (to appear).
- 6. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York; Addison-Wesley, Reading, Mass., 1963. MR 30 #2090.
- 7. C. K. Gupta, A faithful matrix representation for certain centre-by-metabelian groups, J. Austral. Math. Soc. 10 (1969), 451-464. MR 41 #5513.
- 8. I. Hughes, Division rings of fractions for group rings, Comm. Pure Appl. Math. 23 (1970), 181-188. MR 41 #8533.
- 9. R. Moufang, Einige Untersuchungen über geordnete Schiefkörper, J. Reine Angew. Math. 196 (1937), 203-223.
- 10. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252. MR 11, 311.
- 11. O. F. G. Schilling, *The theory of valuations*, Math. Surveys, no. 4, Amer. Math. Soc., Providence, R.I., 1950. MR 13, 315.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA