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ON RESTRICTED WEAK TYPE (1, l)1

K. H.  MOON

Abstract. Let {S*}* a i be a sequence of linear operators defined

on L'CR") such that for every f€ ¿'(A"), Skf=f*gk for some

gteV(R"), k=\,2,---, and Tf{x)= sup* â 11 $*/(*) |. Then the
inequality m{x G R"; Tf(x)>y}^Cy~1 ÇRn |/(/)| dt holds for charac-

teristic functions f(T is of restricted weak type (1,1)) if and only

if it holds for all functions feL1(R") (ris of weak type (1,1)). In
particular, if Skf is the k\h partial sum of Fourier series of/, this

theorem implies that the maximal operator T related to Sk is not

of restricted weak type (1,1).

1. Introduction. We will show that maximal operators of a certain

type are of weak type (1, 1) if and only if they are of restricted weak type

(1, 1). Many important operators are of the type considered.

Throughout, Rn will denote «-dimensional Euclidean space, m will

denote Lebesgue measure on Rn, and/will denote a measurable function

on Rn. Recall that Lv(Rn) is the set of all real (or complex) valued measur-

able functions on Rn with the property

(1   1) llfh =   (Lnl/(X)r dX) V<   °°* 1  - P  <   °°'

11/11 œ = inf{y; m{x e R":\f(x)\ > y} = 0} < oo.

Cc(Rn) will denote the set of all continuous functions on R" with compact

supports and S(Rn) will denote the set of all simple functions each of which

is a finite linear combination of characteristic functions of compact

connected sets.

The convolution of measurable functions/and g on Rn is defined by

(1.2) (/*g)(x) = f f(t)g(x-t)dt

whenever the integral exists. Note that

(1J) l/*fliáL/VI*li-
Let T be an operator defined on Lp(Rn).
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T is of weak type (p, q) if there exists a positive constant A such that

for each function/in Lp(Rn) and y>0

(1.4) m{x e R"; \Tf(x)\ > y} ^ {(Ajy) \\f\\P)".

T is of restricted weak type (p, q) if inequality (1.4) holds whenever/

is restricted to the collection of characteristic functions of measurable

set in Rn with finite measure.

It is obvious that T is of restricted weak type (p, q) if it is of weak type

(p,q). But the converse is not true for/»>l (see [5]). We will, however,

prove that for some special operators the converse is true forp=\.

2. Restricted weak type (p, q). Stein and Weiss [5] considered the

operator T defined by

Tf(x) = x-vj'y-w'm dy

and showed that T is of restricted weak type (p, q) but not of weak type

(/>, q), in the case/?>l, where l//»+l//>'=l.
However, we are able to prove the following theorem:

Theorem. Let S„ (n=l, 2, • • •) be linear operators on LJ(i?m), each

of the form Snf=f*gnforsomegneL\R™),and!et Tf(x)= supnäl|Sn/(x)|.

Then, T is of restricted weak type (1, q), q^ 1, if and only if T is of weak

type (1, q).

Proof. It is enough to show that T is of weak type (1, q) if it is of

restricted weak type (\,q) since the converse is trivial.

Let/^0 be a function in S(Rm) such that H/IL^O. Since Cc(Rm) is

dense in L\Rm), for any given £>0, there exist hn e Cc(Rm) (n=\, 2, • ■ •)

such that

(2.1) li*»-AJIi<*/2max(l,||/L).
Then we have

(2.2) ]/* g"(x) -/* hn(x)] - L l/(í)l lg"(x " ° - *»(X - f)l dt

Û l/l« Hf„ - Mi < «A
For any fixed X>0 and all positive integers n, l^n^N, there exists

ô=ô(N)>0 such that, for any connected set / with

dia(/) = supflx -y\;x,yel} <d,
x,y el implies

(2-3) \hn(x) - hn(y)\ < A/2 |/|lt

We now divide Rm into disjoint connected sets Ik such that dia(4)<<5

&nd f(x)=ot.k on Ik where at's are positive real numbers. Note that such

of ocfc's are finitely many since/e S^R"1). Put a=max{afc}. Clearly <x= |!/||œ.
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Leti^beasubinterval of 4suchthatm(Ft)=(«Joc)m(4) and set EN= Ut^it-

Thus, we have

(2.4) <xm(EN) = 2 «»(*"*) = 2 «V»*7*) = l/li-
i i

Combining with (2.3) and applying the mean values theorem, we obtain,

for each n, 1 ̂ n^/V,

I/* M*)-«**,* hn(x)\ = I f m/(i)n„(x - /) dt - a f  n„(x - f) A

^ 2 Uf M* - 0¿* - «f M* - Odi

= 2 l<V»(/*)M* - f*) - ctm(Fk)hn(x - t'k)\

(2 5) *
(for some tk e J4 and t'k e ft)

= 2 "»to) IM* - '*) - M* - Ql
i

<yam(Ft)^-=-.

A combination of (2.2), (2.5), and (2.1) with a=||/||œ gives, for each

n, l^n<N,

\SJ(x) - *SnXE¿x)\ ̂  |/* gn(x) -f* K(x)\

+ l/*M*)-«te,*M*)l
+ a I**, * M*) - Zej, * g«(*)l

^ X\2 + e.
Hence, we obtain

TNf(x) = sup |S„/(x)| ^ a^(x) + X\2 + e
lSnSiV *

(2-6) ^ "^(x) + X\2 + e.

From (2.4) and the fact that T is of restricted weak type (\,q), (2.6)

implies

m{x e Rm; TNf(x) > X + e} ^ m{x e Rm; 7^(x) > A/2a}

^ {(A/A)am(£JV)}« = ({Aß) \\fU-

Since TNf(x)^TN+1f(x) for all x e i?m and e>0 is arbitrary, we finally get

m{x e Rn; Tf(x) > X) = lim m{x e Rm; TNf(x) > A}

(2.7) iV~00

^ ((¿M) ll/llt)'   forall/eS(Rm).

We now consider a general function / in L1(i?m). Let TV be a fixed

positive integer. For any given e>0, there exists a function hN e S(Rm)
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such that

(2.8) ||/-Ajr||1<iVmax(l,JIO

where M=max.1Sn¿N\\g„\\1. Then, for each n, l^n<JV, we have

IIS-/- SnhN\W Ú WgJi 11/- Mi < *2
and

(2.9) m{x e R™, \Snf(x) - SnhN(x)\ > e} < s.

Denote Bn{N)-{xeK*; |5J(x)-5^Ä(x)|>«}  and **=UÎLi *„(#)•
Then, for all x $ BN and n=1, 2, • • • , JV,

7W(x) = sup |SB/(x)| ^ T^x) + e ^ ThN(x) + e.
lânSJV

From (2.7), (2.8), and (2.9), we get

m{x e Rm; TNf(x) > A + e} < m{x e Rm; ThN(x) > A} + mBN

á(^IIM1]f+Ímfl,(2V)

^ {(¿MXI/li + e2)}1 + Ne.
Since e is arbitrary, we obtain

m{x e K»; TNf(x) > A} ̂  {{Aß) Il/U«

and finally

m{x e Rm; Tf(x) > A} = lim m{x e Rm; Tnf(x) > A} ̂  (4 11/llX

This completes the theorem.

3. Applications. Let Snf(x) be the nth partial sum of the Fourier

series off(x) with respect to a complete orthonormal system {<f>n; n=0, 1,

2, • • •} defined on a measurable set G in R, that is,

(3.D SJ{x) = 2 &(*) f /(0M0 A
and let

(3.2) M/(x) - sup \Snf(x)\.

We will denote by O(L) the set of all measurable functions f on G

such that

(3.3) <D(|/(x)|)dx<coJ^d/i*
and log+ x=max(0, log x).

On the trigonometric system and the Walsh-Paley system, Sjölin [4]

has shown that for each function / in the class Z.(log+ L)(log+ log+ L),
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Snf(x) converges almost everywhere (a.e.) to /(x) by using the fact that

M is of restricted weak type (p, p), 1 <p< oo (so called "the basic result")

([2] and [4]). We also know that there exists a function/in the class

L(log+ log+ Lf~e for e>0 such that Snf(x) diverges a.e. ([1] and [3]

for the trigonometric system and [3] for the Walsh-Paley system).

The convergences or divergences of the functions in the classes between

L(log+ L)(log+ log+ L) and L(log+ log+ L) for both systems are open

questions.

Suppose that M were of restricted weak type (1, 1). Then, by following

the same proof of the a.e. convergence of functions in

L(log+L)(log+log+¿)

[4], we would be able to prove that for each function / in the class

L(log+ log+ L), Snf(x) converges a.e. to/(x). But unfortunately we know

that for both systems, M is not of weak type (1, 1) and so is not of

restricted weak type (1, 1) by our theorem. This shows that the modifi-

cation of the method in [2] and [4] to prove the almost everywhere

convergence of functions in the class L(log+ log+ L) is not available.

Let us note that the maximal Hubert transform M defined by

(3.4) M/(x) - sup |Hn/(x)|,

where Hnf(x)=$lln<x_t]<nf(t)l(x-t)dt, is of the type that we have

considered.

The Hardy-Littlewood maximal operator A defined by

(3.5) A/(x) = supM- f     |/(0I dt),

where In(x) is any interval with center at x and length 2~n is essentially

of this type.
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