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SOLUTION OF A NONLINEAR PARTIAL DIFFERENTIAL
EQUATION WITH INITIAL CONDITIONS

JAMES L.  REID  AND  W.   M.  PRITCHARD

Abstract. The exact solution <f> of a particular nonlinear

partial differential equation is obtained in terms of solution « of a

related linear partial differential equation. It is noted that solution

<j> may be found subject to initial conditions if certain initial con-

ditions can be determined for solution u. Two examples are solved

explicitly.

R. T. Herbst [1] has pointed out that the ordinary nonlinear differential

equation

(1) / + p(x)y' + kq(x)y = (1 - Oy'y-1 + ßq(x)y1-^

has the solution

(2) y = [u + lß]h,       kl=l,ß = const,

provided that u satisfies the ordinary linear differential equation

(3) u" + p(x)u + q(x)u = 0.

The purpose of this short note is to observe that (1) is readily generalized

to the partial differential equation (6), below, in n independent variables

x=(Xi, • • • , xn).

To obtain this generalization, define the operator

(4) Lk = 2 ««(*) r^r + Î b^ 7~ + kcW >
iXi dXidXj     Sí 0Xi

substitute <p(x) defined by

(5) <f>(x) = [u(x) + ßlf

into the nonlinear differential equation

(6) Lk<p=f(x,<¡>,d4>idx),
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where f(x, <f>, d<f>/dx) represents the nonlinear terms to be determined;

and, finally, make use of the assumption that u(x) satisfies the linear

equation

(7) Lxu = g(x),

where Lx is (4) with k=l. The calculation thus amounts to carrying out

the operations indicated by (6), this procedure providing an identity for/.

The details are straightforward and are omitted.

Thus the nonlinear partial differential equation

(8)     Lk = (i - or12 a»<*) ;r r- + t^w + fcg(*)tf1_î

is satisfied by (5), provided u(x) satisfies the linear partial differential

equation (7). Let this linear equation be called the base equation. The

function g(x) is arbitrarily prescribed; its presence in (7) extends the

ordinary differential equation of Herbst.

If, in a given problem, the nonlinear term <f>x~l is present while c(x)=0,

it is obvious that the base equation must be nonhomogeneous. When

ßc(x)^0, the base equation may be homogeneous if the product ßc(x)

can be adjusted, as is always the case if c is constant, to match a given

coefficient of </>1_i. The arbitrariness of ß and g(x) provides some flexibility

in adapting (8) to a specified nonlinear equation.

An initial value problem can be posed for the solution <f>(x) of the non-

linear equation (8) in terms of the solution u(x) of the linear equation (7).

Let x0 denote initial values for any m of the n independent variables and

let z denote the remaining n—m variables, such that

(9) <f>(z, x0) = U¿)

represents a specified function of the x0 initial values and z. The function

(10) u(z, x0) = u0(z)

is to be determined, and, from (5), it clearly must be

oí) u0(z) = [¿„cor - ßh

where <f>o(z)^0 if/<0. Therefore if u(x) satisfies the linear equation (7)

and the initial condition (11), then <j>(x) satisfies the nonlinear equation

(8) and the initial condition (9).

Similarly, if an initial condition on any of the first derivatives of <p(x)

is specified then a corresponding derivative of u(x) may be determined.

For example, suppose that

(12) d<f>(x)ldXi\Xil._Xio = F(z),
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where F(z) is some function specified at xi0. It is thus required that

(13) du(x)ldXi\Xi=Xiii = l[<f>(z, xi0)]!-if(z),

where <f>(z, xi0)^0 if /<1.

On the other hand, the specification of initial values for u(x) and

du(x)jdxi imposes initial values on <f>(x) and d<f>(x)/dxi. Two explicit initial

value problems are discussed below, after some special forms of (8) are

noted.

For the special case ö,,=0, ij*j, and atimat constant, it is possible to

put (8) in the form

Vj + tb¿x)& + kc(x)i
(1A\ t=l OX,

1-} = (1 - O^W)2 + [ßc(x) + kg(xM1-1,

where ^/at3/3xj is the <th component of a slightly generalized gradient

operator Va such that

a  9x? a  vav
A nonlinear extension of the «-dimensional heat equation considered by

Widder [2] follows from (14) in the form

(is) vft - a^/a« = (i - or1^)2 + g(x)^-J,

having a solution from the solution u of the base equation

(16) V2au - dujdt = g(x),

where ? denotes a time variable. In this case, the coefficients au are all

unity. The generalized gradient as defined above allows a nonlinear

version of the equation studied by Lo [3] to take the same form as (15)

but with ûf=l, z'=l, n— 1, say, and an=s. A nonlinear Klein-Gordon

equation would appear in this notation as

(17) V0> + kM2<f, = (1 - Z)f XV^)2 + kg(x)<f>1-1,       ßsO,

with a,=,/—1, z'=l,3; a4=l; and Af=constant. A solution of (17)

would follow from the nonhomogeneous Klein-Gordon equation

(18) V2« + M2u = g(x).

The idea of devising a solution of a nonlinear partial differential equa-

tion from that of a related linear partial differential equation has been

applied by Montroll ([4],  [5]) to models of population growth and
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diffusion. He has considered, among others, nonlinear equations of the

form

(19) DVV - dfflt =-D{l- [G'(<f>)IG(<p)](V<f>)2} + KG(<f>),

where D and K are constants. Montroll solved this equation for G(<¡>)=

<j>(d—<f>)l6, 0=constant, with several initial conditions. It is noted that

(15) provides another type of nonlinear diffusion equation for which an

exact solution is possible.

As an explicit example, consider the one-dimensional form of (15), i.e.,

(20) D<?xx - & « (1 - W-'Dtl + g(x)<p1~\

where x now denotes a single space variable defined in a closed interval

O^x^L. This one-dimensional equation is chosen for convenience to

avoid undue complications. The problem is to solve (20) subject to the

initial condition

(21) <f>(x, 0) = Ux) = 0.

The condition that u(x) must meet follows from (11) with ß=0:

(22) u(x, 0) = u0(x) = [¿0(x)]¡ = 0,       / > 0.

Thus an initial value problem is possible if / is positive. A solution of the

base equation (16) is known [6, p. 288] to be

(23) u(x, t) = 2 ( fgm(T)exp[- D(m7r/L)2(i - r)]dr sin(m7rx/L),
m=l '■•'0 '

with
oo

g(x, t) = -2 gm(0sin(m7Tx/L),
(24) Ä

g«(0-7 [Lg(^,t)ûn(m^lL)dè.
L Jo

Clearly, u(x, 0)=0 is possible from (23), and, hence, a solution of (20)

and (21) is given by (23), the combination and (5). For this case, (20) is

also satisfied for the boundary values

(25) #0,0 = 0,       <¿(L,í) = 0,       />0.

A second application of (15) is found in a solid state problem [7]. If

the variables i and C are eliminated in equation (3) of [7], one obtains

the ordinary differential equation

(26) <p" + bf = 2<p-l<f>'2 - g<p
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with constant coefficients, which is to be solved subject to the initial

conditions

(27) ¿(0) = 1,       f(0) = 0.

The solution of (26) is

(28) <f>(t) = [u(t) - ß]~\

the solution u being

(29) u(t) = C1 + C2 exp(-bt) + gt\b

with Ci and C2 arbitrary constants. Imposing condition (11), one obtains

(30) W(0) = l+p\       /-—1,

which also follows from (29) with Cx=-\ and C2=ß. Imposing condition

(13) on u'(t), one must have w'(0)=0. Differentiation of (29) with Cx and

C2 equal to 1 and ß, respectively, shows that i/(0)=0 is secured \fß=g\b2.

The initial value problem (26) and (27) is thus solved.
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