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SOLUTION OF A NONLINEAR PARTIAL DIFFERENTIAL
EQUATION WITH INITIAL CONDITIONS

JAMES L. REID AND W. M. PRITCHARD

ABsTRACT. The exact solution ¢ of a particular nonlinear
partial differential equation is obtained in terms of solution « of a
related linear partial differential equation. It is noted that solution
¢ may be found subject to initial conditions if certain initial con-
ditions can be determined for solution u. Two examples are solved
explicitly.

R. T. Herbst [1] has pointed out that the ordinary nonlinear differential
equation
() V' 4+ p(x)y + kq(x)y = (1 — Dy~ + Bg(x)y*~
has the solution
) y=[u+18Y;, ki=1,p = const,
provided that u satisfies the ordinary linear differential equation
?3) u" + p(x)u’ + q(x)u =0

The purpose of this short note is to observe that (1) is readily generalized
to the partial differential equation (6), below, in » independent variables
x=(xla ) xn)'

To obtain this generalization, define the operator

4 Z ai(x) S + Z bi(x) 7 + ke(x);

2,j=1 j i=1

substitute ¢(x) defined by
4 $(x) = [u(x) + B

into the nonlinear differential equation
© Li$ = f(x, ¢, 9¢/0x),
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where f(x, ¢, 0¢/0x) represents the nonlinear terms to be determined;
and, finally, make use of the assumption that u(x) satisfies the linear
equation

(7) Llu = g (X),

where L, is (4) with k=1. The calculation thus amounts to carrying out
the operations indicated by (6), this procedure providing an identity for f.
The details are straightforward and are omitted.

Thus the nonlinear partial differential equation

® L= (=D a2 25 4 (pe(x) + kg4

i,5=1 x; 0x;
is satisfied by (5), provided u(x) satisfies the linear partial differential
equation (7). Let this linear equation be called the base equation. The
function g(x) is arbitrarily prescribed; its presence in (7) extends the
ordinary differential equation of Herbst.

If, in a given problem, the nonlinear term '~ is present while ¢(x)=0,
it is obvious that the base equation must be nonhomogeneous. When
Be(x)#£0, the base equation may be homogeneous if the product fe(x)
can be adjusted, as is always the case if ¢ is constant, to match a given
coefficient of ¢*~. The arbitrariness of 8 and g(x) provides some flexibility
in adapting (8) to a specified nonlinear equation.

An initial value problem can be posed for the solution ¢(x) of the non-
linear equation (8) in terms of the solution u(x) of the linear equation (7).
Let x, denote initial values for any m of the n independent variables and
let z denote the remaining n—m variables, such that

) $(2, xo) = $o(2)

represents a specified function of the x, initial values and z. The function
(10) u(z, Xo) = uy(2)

is to be determined, and, from (5), it clearly must be

(11 uy(2) = [$o(2)]' — BI,

where ¢4(z)#0 if / <0. Therefore if u(x) satisfies the linear equation (7)
and the initial condition (11), then ¢(x) satisfies the nonlinear equation
(8) and the initial condition (9).

Similarly, if an initial condition on any of the first derivatives of ¢(x)
is specified then a corresponding derivative of u(x) may be determined.
For example, suppose that

(12) a‘#(x)/axi'zﬁzm = F(2),
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where F(z) is some function specified at x;,. It is thus required that
(13) 0u(X)[0xi|zmzy = 1[$(2, X:0)]F(2),

where ¢(z, x;)#0 if / <1.

On the other hand, the specification of initial values for u(x) and
Ou(x)/0x; imposes initial values on ¢(x) and d¢(x)/dx;. Two explicit initial
value problems are discussed below, after some special forms of (8) are
noted.

For the special case a;;=0, i#%j, and a;;=a; constant, it is possible to
put (8) in the form

Vi + bx)

af + ke(0)
(14) i=1 13

ax,
= (1 = D7(Vad)® + [Be(x) + kg()1$',

where ./a,0/0x; is the ith component of a slightly generalized gradient
operator V, such that

n a2¢ n aqS 2
V2 = , — \v) 2 = (—) .
a¢ g a; aXf and ( a¢) ; a; axi

A nonlinear extension of the n-dimensional heat equation considered by
Widder [2] follows from (14) in the form

(15) Vep — 040t = (1 — D7 (V9)* + g(x)¢',
having a solution from the solution u of the base equation
(16) Viu — du/ot = g(x),

where ¢ denotes a time variable. In this case, the coefficients a;; are all
unity. The generalized gradient as defined above allows a nonlinear
version of the equation studied by Lo [3] to take the same form as (15)
but with a;=1, i=1, n—1, say, and a,=¢. A nonlinear Klein-Gordon
equation would appear in this notation as

(A7) Vip + kM*¢ = (1 — D$'(Vad)* + ke()$'™, B =0,

with a,-=\/—1, i=1,3; a,=1; and M=constant. A solution of (17)
would follow from the nonhomogeneous Klein-Gordon equation

(18) Viu + MPu = g(x).

The idea of devising a solution of a nonlinear partial differential equa-
tion from that of a related linear partial differential equation has been
applied by Montroll ([4], [5]) to models of population growth and
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diffusion. He has considered, among others, nonlinear equations of the
form

(19)  DV*¢ —94/ot = —D{1 — [G'($)/G(HUVH)*} + KG(9),

where D and K are constants. Montroll solved this equation for G(¢)=
¢(6—¢)/6, 6=constant, with several initial conditions. It is noted that
(15) provides another type of nonlinear diffusion equation for which an
exact solution is possible.

As an explicit example, consider the one-dimensional form of (15), i.e.,

(20) D¢, — ¢ = (1 — D$™D? + g(x)$™,

where x now denotes a single space variable defined in a closed interval
0=x=L. This one-dimensional equation is chosen for convenience to
avoid undue complications. The problem is to solve (20) subject to the
initial condition

(21) $(x, 0) = Bo(x) = 0.
The condition that u(x) must meet follows from (11) with §=0:
(22) u(x, 0) = up(x) = [$(x)I' =0, 1>0.

Thus an initial value problem is possible if / is positive. A solution of the
base equation (16) is known [6, p. 288] to be

23) u(x,t) = i {ftgm(‘r)exp[— D(m=[L)*(t — -r)]d‘r}sin(mwx/L),
0

m=1

with

o5 g(x, 1) = —glgm(osin(mwx/m,

2 (L .
8a() = 2 ["e(6, DsinGmmiL) .
[}
Clearly, u(x, 0)=0 is possible from (23), and, hence, a solution of (20)

and (21) is given by (23), the combination and (5). For this case, (20) is
also satisfied for the boundary values

(25 #0,6)=0, HL,t)=0, I>0.

A second application of (15) is found in a solid state problem [7]. If
the variables i and C are eliminated in equation (3) of [7], one obtains
the ordinary differential equation

(26) ¢’ + bp’ = 2471¢"% — g¢*
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with constant coefficients, which is to be solved subject to the initial
conditions

27 $0) =1, ¢©0=0.

The solption of (26) is

(28) é(1) = [u(t) — I,

the solution u being

(29) u(t) = C; + Cyexp(—br) + gt/b

with C, and C, arbitrary constants. Imposing condition (11), one obtains
(30) u0=1+4, [I=-1,

which also follows from (29) with C;=1 and C,=f. Imposing condition
(13) on u'(r), one must have u’(0)=0. Differentiation of (29) with C, and
C,equal to 1 and S, respectively, shows that u’(0)=0 is secured if 3=g/b*.
The initial value problem (26) and (27) is thus solved.
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